The Effects of Calcination Temperatures in the Synthesis of Nanocrystalline Magnesium Oxide via Sol-Gel Technique

Article Preview

Abstract:

This study highlights on a convenient and optimised method for the preparation of nanocrystalline magnesium oxide (MgO) catalyst via sol-gel combustion method. Nanocrystalline MgO was prepared by using polyvinyl alcohol (PVA) as a complexing agent and metal nitrate (Mg (NO 3 )2.6H2O) as a precursor. The obtained MgO powder was calcined at 200 °C, 400 °C, 600 °C and 800 °C. All the MgO calcined samples including commercial MgO were characterised using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-Ray diffraction (XRD) and N2 adsorption-desorption Brunauer–Emmett–Teller (BET). From FTIR analysis, the appearance of a peak at 3700 cm-1 represent the O-H stretching bonded with Mg and the broad absorption peak at 3421 cm-1 indicates O-H stretching band which is due to the absorption of moisture from the surrounding. (BET) results indicate the MgO sample that has been calcined at 400 °C shows the largest surface area. SEM images show there is porosity in all MgO powder. While XRD patterns revealed that higher temperature of calcination gives higher crystallinity of the MgO samples.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-42

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Singh, I. P. S. Kapoor, S. Dubey, P. F. Siril, Preparation, Characterization and Catalytic Activity of Transition Metal Oxide Nanocrystals. J. Sci. Conf. Proc. 1 (2008) 7-14.

DOI: 10.1166/jcp.2009.002

Google Scholar

[2] Y. C. Sharma, B. Singh, K. J. Korstad, Latest developments on application of heterogenous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel. 90(4) (2011) 1309-1324.

DOI: 10.1016/j.fuel.2010.10.015

Google Scholar

[3] N. A. Harun, M. J. Benning, B. R. Horrocks, D. A. Fulton, Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles. Nanoscale. 5 (2013) 3817-3827.

DOI: 10.1039/c3nr00421j

Google Scholar

[4] H. Li, R. Xiao, Y. Zhan, H. D. Bian, B. Nie, Z. Chen, J. Lu, Y. Y. & Li, Efficient ternary ChSSe quantum-dot-sensitized solar cells based on MgO-coated TiO2 nanoparticles. Energ. Tech. 2(6) (2014) 526-530.

DOI: 10.1002/ente.201400003

Google Scholar

[5] M. S. Mastuli, N. Kamarulzaman, M. A. Nawawi, A. M. Mahat, R. Rusdi, N. Kamarudin, Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents. Nano. Res. Lett. 9 (2014) 134.

DOI: 10.1186/1556-276x-9-134

Google Scholar

[6] M. Babaie, H. Sheibani, Nanosized magnesium oxide as a highly heterogeneous base catalyst for the rapid synthesis of pyranopyrazoles via a tandem four-component reaction. Arabian J. Chem. 4 (2011) 159-162.

DOI: 10.1016/j.arabjc.2010.06.032

Google Scholar

[7] B. Nagappa, G. T. Chandrappa, Mesoporous Nanocrystalline Magnesium Oxide for Environmental Remediation. Microp. Mesop. Mater. 106 (2007) 212-218.

DOI: 10.1016/j.micromeso.2007.02.052

Google Scholar

[8] M. Y. Hanis, U. H. Nuur, H. Norhafiefa, I. Fatin, Comparison of Sol-gel and Dehydration Magnesium Oxide as a Catalyst in Michael Addition Reaction. Int. J. Integr. Eng. 7(3) (2015) 43-50.

Google Scholar

[9] R. Wahab, S. G. Ansari, M. A. Dar, Y. S. Kim, H. S. Shin, Synthesis of magnesium oxide nanoparticles by sol-gel process. Mater. Sci. Forum. 558-559 (2007) 983-986.

DOI: 10.4028/www.scientific.net/msf.558-559.983

Google Scholar

[10] S. Balamurugan, L. Ashna, P. Parthibani, Synthesis of nanocrystalline Mgo particles by combustion followed by annealing method using hexamine as a fuel. J. Nanotech. (2014) 2014 841803.

DOI: 10.1155/2014/841803

Google Scholar

[11] A. R. Beuno, R. F. M. Oman, P. M. Jardin, N. A. Rey, R. R. Avillez, Kinetics of nanocrystalline MgO growth by the sol-gel combustion method. Microp. Mesop. Mater. 185 (2014) 86-91.

DOI: 10.1016/j.micromeso.2013.10.021

Google Scholar

[12] A. Hunyek, C. Sirisathikul, Variation In Magnetic Properties of Sol-Gel-Synthesized Cobalt Ferrites. Mater. Tech. 47(6) (2013) 845–848.

Google Scholar

[13] H. Jeon, D. J. Kim, J. H. Kim, Synthesis of mesoporous MgO catalyst templated by a PDMS-PEO comb-like copolymer for biodiesel production. Fuel Proc. Tech. 116 (2013) 325-331.

DOI: 10.1016/j.fuproc.2013.07.013

Google Scholar

[14] A. R. Yacob, M. K. Asyraf, N. S. Samadi, Calcination Temperature of Nano MgO Effect on Base Transesterification of Palm Oil. World Academy of Science, Eng. Tech. 3(1) (2009) 408-412.

Google Scholar

[15] S. S. Chang, B. Clair, J. Ruelle, J. Beauchêne, F. D. Reuno, F. Quignard, G. J. Zhao, H. Yamamoto, J. Gril, Mesoporosity as a new parameter for understanding tension stress generation in trees. J. Exp. Botany. 60(11) (2009) 3023-3030.

DOI: 10.1093/jxb/erp133

Google Scholar