Effects of Ca and RE Additions on the Precipitation and Microstructure of As-Cast AZ91 Alloy

Article Preview

Abstract:

The effect of Ca and RE metal additions on the precipitation and microstructure of as-cast AZ91 alloy was systematically investigated. It was found that Ca and RE additions could result in phase and microstructure changes. The XRD pattern showed the crystallite phase of as-cast AZ91 alloys consists of α-Mg matrix and β-Mg17Al12, however, after adding 1.5wt. % Ca and 0.8wt. % RE (0.5wt. % Sm and 0.3wt. % La), peaks coincident with Al2Ca, Al2Sm and Al11La3 intermetallic compounds were found, suggesting the generation of relative precipitates. The SEM images indicated that in as-cast alloys, the Al2Ca intermetallic compound was located at grain boundaries with a lamellar structure, and the Al2Sm intermetallic compound was homogeneously distributed in the α-Mg matrix or near the grain boundaries with a polygonal structure, and the Al11La3 intermetallic compound was located at grain boundaries with a needlelike structure. These intermetallic compounds could reduce the amount of β-Mg17Al12 and refine the microstructure of as-cast AZ91 alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-35

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Bamberger, G. Dehm, Trends in the development of new Mg alloys, Annu. Rev. Mater. Res. 38 (2008) 505-533.

DOI: 10.1146/annurev.matsci.020408.133717

Google Scholar

[2] B. Mordike, T. Ebert, Magnesium: Properties-applications-potential, Mater. Sci. Eng. A 302(1) (2001) 37-45.

Google Scholar

[3] L. B. Tong, X. H. Li, H. J. Zhang, Effect of long period stacking ordered phase on the microstructure, texture and mechanical properties of extruded Mg-Y-Zn alloy, Mater. Sci. Eng. A 563 (2013) 177-183.

DOI: 10.1016/j.msea.2012.10.088

Google Scholar

[4] L. B. Tong, M. Y. Zheng, L. R. Cheng et al., Effect of extrusion ratio on microstructure, texture and mechanical properties of indirectly extruded Mg-Zn-Ca alloy, Mater. Sci. Eng. A 569 (2013) 48-53.

DOI: 10.1016/j.msea.2013.01.052

Google Scholar

[5] S. W. Xu, N. Matsumoto, K. Yamamoto et al., High temperature tensile properties of as-cast Mg-Al-Ca alloys, Mater. Sci. Eng. A 509(1-2) (2009) 105-110.

DOI: 10.1016/j.msea.2009.02.024

Google Scholar

[6] T. Homma, S. Hirawatari, H. Sunohara et al., Room and elevated temperature mechanical properties in the as-extruded Mg–Al–Ca–Mn alloys, Mater. Sci. Eng. A 539 (2012) 163-169.

DOI: 10.1016/j.msea.2012.01.074

Google Scholar

[7] Y. Q. Wang, M. Z. Li, C. Li et al., The effect of Ca on corrosion behavior of heat-treated Mg-Al-Zn alloy, Mater. Corros. 63(6) (2012) 497-504.

DOI: 10.1002/maco.201005957

Google Scholar

[8] R. Ninomiya, T. Ojiro, K. Kubota, Improved heat resistance of Mg-Al alloys by the Ca addition, Acta Metall. Mater. 43(2) (1995) 669-674.

DOI: 10.1016/0956-7151(94)00269-n

Google Scholar

[9] Q. D. Wang, Y. Z. Lu, X. Q. Zeng et al., Study on the fluidity of AZ91+xRE magnesium alloy, Mater. Sci. Eng. A 271(1-2) (1999) 109-115.

Google Scholar

[10] Y. Z. Lu, Q. D. Wang, X. Q. Zeng et al., Effects of rare earths on the microstructure, properties and fracture behavior of Mg-Al alloys, Mater. Sci. Eng. A 278(1-2) (2000) 66-76.

DOI: 10.1016/s0921-5093(99)00604-8

Google Scholar

[11] K. Liu, J. Meng, Microstructures and mechanical properties of the extruded Mg-4Y-2Gd-xZn-0. 4Zr alloys, J. Alloys Compd. 509(7) (2011) 3299-3305.

DOI: 10.1016/j.jallcom.2010.12.015

Google Scholar

[12] B. Kondori, R. Mahmudi, Effect of Ca additions on the microstructure, thermal stability and mechanical properties of a cast AM60 magnesium alloy, Mater. Sci. Eng. A 527(7-8) (2010) 2014-(2021).

DOI: 10.1016/j.msea.2009.11.043

Google Scholar

[13] Z. T. Jiang, B. Jiang, H. Yang et al., Influence of Al2Ca phase on microstructure and mechanical properties of Mg-Al-Ca alloys, J. Alloys Compd. 647 (2015) 357-363.

DOI: 10.1016/j.jallcom.2015.06.060

Google Scholar

[14] T. E. Quested, A. L. Greer, Grain refinement of Al alloys: Mechanisms determining as-cast grain size in directional solidification, Acta. Mater. 53 (2005) 4643–4653.

DOI: 10.1016/j.actamat.2005.06.018

Google Scholar

[15] M. Sun, X. Hu, L. Peng et al., Effects of Sm on the grain refinement, microstructures and mechanical properties of AZ31 magnesium alloy, Mater. Sci. Eng. A 620 (2015) 89–96.

DOI: 10.1016/j.msea.2014.09.106

Google Scholar

[16] Y. A. Chen, L. Jin, D. Fang et al., Effects of calcium, samarium addition on microstructure and mechanical properties of AZ61 magnesium alloy, J. Rare Earths 33(1) (2015) 86-92.

DOI: 10.1016/s1002-0721(14)60387-2

Google Scholar

[17] Q. Yang, F. Q. Bua, F. Z. Meng et al., The improved effects by the combinative addition of lanthanum and samarium on the microstructures and the tensile properties of high-pressure die-cast Mg-4Al-based alloy, Mater. Sci. Eng. A 628 (2015).

DOI: 10.1016/j.msea.2015.01.050

Google Scholar

[18] J. L. Zhang, Z. Y. Feng, L. Q. Hu et al., Precipitation behavior of AZ91 magnesium alloys with different La contents, Acta Metall. Sin. 48(5) (2012) 607-614.

DOI: 10.3724/sp.j.1037.2012.00014

Google Scholar