Corrosion Behaviors of Permanent Mold Cast Mg Alloy AJ62 with Varying Grain Structures in Automotive-Related Environments

Article Preview

Abstract:

Permanent mold cast (PMC) AJ62 magnesium alloy exhibits a fine-grained microstructure in the thin section and a coarse-grained microstructure in the thick section. Microstructure of the PMC AJ 62 alloy was analyzed by using the Scanning Electron Microscopy (SEM). Potentiodynamic polarization experiments were performed to investigate the corrosion resistances of the PMC AJ62 alloys in salt solutions and engine coolant. The corrosion behaviors in the fine- and coarse-grained AJ62 alloys were compared. The results show that the AJ62 alloy with fine microstructure presents enhanced corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-14

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Hu, A. Yu, N. Li, J. E. Allison, Potential magnesium alloys for high temperature die cast automotive applications: a review, Mater. Manuf. Process. 18(5) (2003) 687-717.

DOI: 10.1081/amp-120024970

Google Scholar

[2] E. Baril, P. Labelle, M. O. Pekguleryuz, Elevated temperature Mg-Al-Sr: creep resistance, mechanical properties, and microstructure, J. Mater. 55(11) (2003) 34-39.

DOI: 10.1007/s11837-003-0207-7

Google Scholar

[3] M. Kunst, A. Fischersworring-Bunk, G. L'Esperance, P. Plamondon, U. Glatzel, Microstructure and dislocation analysis after creep deformation of die cast Mg-Al-Sr (AJ) alloy, Mater. Sci. Eng. A, 510-511 (2009) 387-392.

DOI: 10.1016/j.msea.2008.07.078

Google Scholar

[4] M. O. Pekguleryuz, A. A. Kaya, Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater. 5(12) (2003) 866-878.

DOI: 10.1002/adem.200300403

Google Scholar

[5] R. N. Lumley, R. G. O'Doenell, D. R. M. Gunasegaram, Givord, New heat treatment for Al high pressure die castings, Heat Treat. Prog. 6 (2006) 31-37.

Google Scholar

[6] A. K. Dahle, S. Sannes, D. H. St. John, H. Westengen, Formation of defect bands in high pressure die cast magnesium alloys, J. Light Metals. 1(2) (2001) 99-103.

DOI: 10.1016/s1471-5317(01)00002-5

Google Scholar

[7] J. P. Weiler, J. T. Wood, R. J. Klassen, R. Berkmortel, G. Wang, Variability of skin thickness in an AM60B magnesium alloy die-casting, Mater. Sci. Eng. A. 419(1-2) (2006) 297-305.

DOI: 10.1016/j.msea.2006.01.034

Google Scholar

[8] M. Zhou, H. Hu, N. Li, J. Lo, Microstructure and tensile properties of squeeze cast magnesium alloy AM50, J. Mater. Eng. Perform. 14(4) (2005) 539-545.

DOI: 10.1361/105994905x56151

Google Scholar

[9] H. Hu, X. Nie, Y. Ma, Corrosion and surface treatment of magnesium alloys, in: F. Czerwinski (Ed. ) Magnesium Alloys – Properties in Solid and Liquid States, In-Tech, Croatia, 2014, pp.67-108.

DOI: 10.5772/58929

Google Scholar

[10] Z. Sun, H. Hu, J. R. Burns, X. Nie, L. Han, Design of a Step Permanent Mould for Casting Magnesium Alloy AJ62, AFS Trans. 118 (2010) 712-719.

Google Scholar

[11] P. Zhang, X. Nie, H. Hu, Y. Liu, TEM analysis and tribological properties of Plasma Electrolytic Oxidation (PEO) coatings on a magnesium engine AJ62 Alloy, Surf. Coat. Technol. 205(5) (2010) 1508-1514.

DOI: 10.1016/j.surfcoat.2010.10.015

Google Scholar

[12] L. H. Han, X. Y. Nie, H. Hu, Electrochemical behaviour of squeeze cast AJ62 magnesium alloy in salt solution and engine coolant, Mater. Technol. 24(4) (2009) 170-173.

DOI: 10.1179/106678509x12475883594787

Google Scholar

[13] J. R. Burns, L. Han, H. Hu, X. Nie, Effects of section thicknesses on tensile properties of permanent mould cast magnesium alloy AJ62, Magnesium Technology 2010, The Minerals, Metals, and Materials Society. (2010) 367-371.

DOI: 10.4271/2010-01-0412

Google Scholar

[14] G. L. Makar, J. Kruger, Corrosion of magnesium, Int. Mater. Rev. 38(2) (1993) 138-153.

Google Scholar

[15] G. Song, D. StJohn, Corrosion behaviour of magnesium in ethylene glycol, Corros. Sci. 46(6) (2004) 1381-1399.

DOI: 10.1016/j.corsci.2003.10.008

Google Scholar