Inactivation of Bread Molds on Agar by Atmospheric Pressure Plasma Jet

Article Preview

Abstract:

The aim of this study was to evaluate the effect of argon plasma jet, generated at atmospheric pressure, on Aspergillus sp. The molds were isolated from commercial white bread and inoculated on potato dextrose agar (PDA) containing 10% tartaric acid. The atmospheric pressure plasma jet (APPJ) was generated at a high frequency (43 kHz) power of 10, 20, or 30W and applied to the inoculated molds on PDA for 5, 10, or 20 minutes. The PDA plates were incubated for 3 and 6 days and the fungal inactivation was investigated directly under light microscope and indirectly by comparing the fungal dry weights. The results indicated that higher power supply and longer plasma exposure time led to more reduction in the fungal dry weight. The APPJ appears to be effective in destroying Aspergillus sp., yet the optimal plasma treatment condition remains to be optimized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-96

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochimica Acta Part B: Atomic Spectroscopy. 61 (2006) 2-30.

DOI: 10.1016/j.sab.2005.10.003

Google Scholar

[2] A. Bogaerts, E. Neyts, R. Gijbels, J. van der Mullen, Gas discharge plasmas and their applications, Spectrochimica Acta Part B: Atomic Spectroscopy. 57 (2002) 609-658.

DOI: 10.1016/s0584-8547(01)00406-2

Google Scholar

[3] K. Suhem, N. Matan , M. Nisoa , N. Matan , Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment, International Journal of Food Microbiology. 161 (2013) 107-111.

DOI: 10.1016/j.ijfoodmicro.2012.12.002

Google Scholar

[4] A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources. 26 (1998) 1685-1693.

DOI: 10.1109/27.747887

Google Scholar

[5] D. Ziuzina, S. Patil, P.J. Cullen, K.M. Keener, P. Bourke, Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce, Food Microbiology 42 (2014).

DOI: 10.1016/j.fm.2014.02.007

Google Scholar

[6] D. B. Aguirre, E. Wemlinger, P. Pedrow, G. Barbosa-Cánovas, M. Garcia-Perez, Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce, Food Control 34 (2013) 149-157.

DOI: 10.1016/j.foodcont.2013.04.022

Google Scholar

[7] R.X. Wang, W.F. Nian, H.Y. Wu, H.Q. Feng, K, Zhang, J. Zhang, W.D. Zhu, K.H. Becker, J. Fang, Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation, Eur. Phys. J. D 66 (2012).

DOI: 10.1140/epjd/e2012-30053-1

Google Scholar

[8] A. Fröhling, J. Durek, J. Ehlbeck, J. Bolling, O. Schlüter, Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes, Innovative Food Science and Emerging Technologies 16 (2012) 381-390.

DOI: 10.1016/j.ifset.2012.09.001

Google Scholar

[9] E. Noriega, G. Shama, A. Laca, M. Díaz, M.G. Kong, Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua, Food Microbiology 28 (2011) 1293-1300.

DOI: 10.1016/j.fm.2011.05.007

Google Scholar

[10] H.P. Song, B. Kim, J.H. Choe, S. Jung, S.Y. Moon, W. Choe, C. Jo, Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes, Food Microbiology 26 (2009).

DOI: 10.1016/j.fm.2009.02.010

Google Scholar

[11] S. K. Rød, F. Hansen, F. Leipold, S. Knøchel, Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality, Food Microbiology 30 (2012) 233-238.

DOI: 10.1016/j.fm.2011.12.018

Google Scholar

[12] G. Daeschlein, S. Scholz, T. von Woedtke, M. Niggemeier, E. Kindel. R. Brandenburg, K-D. Weltmann, M. Jünger, in Vitro Killing of Clinical Fungal Strains by Low-Temperature Atmospheric-Pressure Plasma Jet, IEEE Transitions on olasma science 39 (2011).

DOI: 10.1109/tps.2010.2063441

Google Scholar

[13] N. Matan, M. Nisoa, N. Matan, T. Aewsiri, Effect of cold atmospheric plasma on antifungal activities of clove oil and eugenol against molds on areca palm (Areca catechu) left sheath, International Biodeterioration & Biodegradation 86 (2014).

DOI: 10.1016/j.ibiod.2013.08.025

Google Scholar

[14] K. Suhem, N. Matan, M. Nisoa, N. Matan, In vitro and in vivo antifungal activities of various gas species under plasma jet treatment against brown rice cereal spoilage molds, International Food Research Journal 20(2) (2013) 947-951.

DOI: 10.1016/j.ijfoodmicro.2012.12.002

Google Scholar

[15] P. Deeyai, P. Amnuaycheewa, P. Kerdtingmee, Effect of Atmospheric Pressure Argon Plasma Jet on the Growth of Bread Molds, Key Enginnering Materials 675-676 (2016) 744-748.

DOI: 10.4028/www.scientific.net/kem.675-676.744

Google Scholar

[16] M. R. Abyaneh, M. S. Ghahfarokhi , M. B. Rezaee, K. Jaimand, S. Alinezhas, R. Saberi, T. Yoshinari, Chemical composition and antiaflatoxigenic activity of Carum carvi L., Thymus vulgaris and Citrus aurantifolia essential oils, Food Control 20 (2009).

DOI: 10.1016/j.foodcont.2008.12.007

Google Scholar