Computational of Orthogonal Metal Cutting Process Using Smooth Particle Hydrodynamics

Article Preview

Abstract:

In modern years, simulating metal cutting process used in Finite element method (FEM). The cutting force is used to identify the excessive friction of machining interface and worn out tool. Optimization of machining parameters are used to maintain the precision of the component, power consumption minimized and tool wear reduced. The current project presents the simulated Finite Element SPH Model used for predict the cutting force and associate with experimental confirmation while turning the AA2219-TiB2/ZrB2 metal matrix composites (MMC). Smooth Particle Hydrodynamics (SPH) machining simulation was carried out using a Lagrangian finite element based machining model to predict the cutting force. The turning simulation operation carried out using ANSYS AUTODYN (SPH) software. Machining parameters are cutting speed, feed rate and depth of cut. The results predicted from the SPH analysis virtually close to the results attained from the experimental work. Simulation of machining test using SPH model is preferred over actual cutting test because of it reduce cost and time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

119-126

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abolfazl Zahedi S, Murat Demiral, Anish Roy, Vadim V. Silberschmidt (2013), FE/SPH modelling of orthogonal micro-machining of f. c. c. single crystal, Computational Materials Science Vol. 78, pp.104-109.

DOI: 10.1016/j.commatsci.2013.05.022

Google Scholar

[2] Alaa A. Olleak, Hassan A. El-Hofy (2015), SPH Modelling of Cutting Forces while Turning of Ti6Al4V Alloy, 10th European LS-DYNA Conference Vol. 33, No. 12, pp.753-763.

DOI: 10.1115/msec2015-9201

Google Scholar

[3] C. Ezilarasan, V.S. Senthil kumar, A. Velayudham (2014), Theoretical predictions and experimental validations on machining the Nimonic C-263 super alloy, Internal Journal of Simulation Modelling Practice and Theory 40 Vol. 40, pp.192-207.

DOI: 10.1016/j.simpat.2013.09.008

Google Scholar

[4] Fabian Spreng, Peter Eberhard (2015), Machining Process Simulations with Smoothed Particle Hydrodynamics, 15th CIRP Conference on Modelling of Machining Operations Vol. 31, pp.94-99.

DOI: 10.1016/j.procir.2015.03.073

Google Scholar

[5] Jiwoo Nam, Taesung Kim, Seong Wook Cho (2014), A numerical cutting model for brittle materials using smooth particle hydrodynamics, Int J Adv Manuf Technol.

DOI: 10.1007/s00170-015-7223-y

Google Scholar

[6] Johnson G.R., Cook W.H., 1983. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceed- ings of the 7th International Symposium on Ballistics, 547: 541-547.

Google Scholar

[7] Jun Lin, Hakim Naceur, Daniel Coutellier, Abdel Laksimi (2013), Efficient mesh less SPH method for the numerical modelling of thick shell structures undergoing large deformations, International Journal of Non-Linear Mechanics.

DOI: 10.1016/j.ijnonlinmec.2014.04.009

Google Scholar

[8] J. Limido, C. Espinosa, M. Salaun, J.L. Lacome (2011), Metal cutting modelling SPH approach, Vol. 9, Nos. 3/4, pp.177-196.

DOI: 10.1504/ijmmm.2011.039645

Google Scholar

[9] A Mahamani (2014), Influence of Process Parameters on Cutting Force and Surface Roughness During Turning of AA2219-TiB2/ZrB2 In-situ Metal Matrix Composites, Internal Journal of Procedia Materials Science Vol. 6, pp.1178-1186.

DOI: 10.1016/j.mspro.2014.07.191

Google Scholar

[10] Martin Madaja, Miroslav Píškaa (2013), On the SPH Orthogonal Cutting Simulation of A2024-T351 Alloy, 14th CIRP Conference on Modelling of Machining Operations (CIRP CMMO) Vol. 8, pp.152-157.

DOI: 10.1016/j.procir.2013.06.081

Google Scholar

[11] Mohammad Ramezani, Ahmad Afsari (2015), Surface roughness and cutting force estimation in the CNC turning using artificial neural networks, Management Science Letters Vol. 5, pp.357-362.

DOI: 10.5267/j.msl.2015.2.010

Google Scholar

[12] N.R. Rajasekaran, and V. Sampath (2011), Effect of In-Situ TiB2 Particle Addition on the Mechanical Properties of AA 2219 Al Alloy Composite, Journal of Minerals & Materials Characterization & Engineering Vol. 10, No. 6, pp.527-534.

DOI: 10.4236/jmmce.2011.106040

Google Scholar

[13] N. Ruttimanna, M. Roethlina, S. Buhlb, K. Wegen era (2013), Simulation of Hexa-Octahedral Diamond Grain Cutting Tests Using the SPH Method, 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO) Vol. 8, pp.322-327.

DOI: 10.1016/j.procir.2013.06.110

Google Scholar

[14] M. Takaffoli, M. Papini (2012), Numerical simulation of solid particle impacts on Al6061-T6 Part II: Materials removal mechanisms for impact of multiple angular particles, Wear 296 Vol. 296, pp.648-655.

DOI: 10.1016/j.wear.2012.07.022

Google Scholar

[15] Uwe Heisel, Wiliam Zaloga, Dmitrii Krivoruchko, Michael Storchak, Liubov Goloborodko (2013), Modelling of orthogonal cutting processes with the method of smoothed particle hydrodynamics, Prod. Eng. Res. Devel. Vol. 7, pp.639-645.

DOI: 10.1007/s11740-013-0484-0

Google Scholar