Scanning Surface Plasmon Microscope for Sensing Lipid Array and Au Film Defect

Article Preview

Abstract:

We demonstrated a scanning radially-polarized surface plasmon microscopy (SSPM) with submicron lateral resolution and high refractive index sensitivity. According to the captured images, SSPM could be used to verify the quality of deposited Au film and Au structure on surface plasmon sensing chip. The defect on the SPR chip, which disturbed the plasmonic wave around the focal point, could be easily detected by our system. Moreover, the application of SSPM in imaging lipid array was showed in this article. The 1, 2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) array was made by dip-pen nanolithography. The results indicated that SSPM system could be used in comparing the thickness of DOPC array. Because of the high sensitivity and high spatial resolution of the system, we expected the SSPM to be used in measuring the properties of nanogold array structures and apply to digital-array biosensors in nanoscale.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-26

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Hickel and W. Knoll, Surface plasmon microscopic imaging of ultrathin metal coatings, Acta Metallurgica, vol. 37, pp.2141-2144, 8/ (1989).

DOI: 10.1016/0001-6160(89)90139-9

Google Scholar

[2] J. Homola, S. S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review, Sensors and Actuators B: Chemical, vol. 54, pp.3-15, 1/25/ (1999).

DOI: 10.1016/s0925-4005(98)00321-9

Google Scholar

[3] B. Rothenhausler and W. Knoll, Surface–plasmon microscopy, Nature, vol. 332, pp.615-617, 04/14/print (1988).

Google Scholar

[4] S. D. Evans, H. Allinson, N. Boden, T. M. Flynn, and J. R. Henderson, Surface Plasmon Resonance Imaging of Liquid Crystal Anchoring on Patterned Self-Assembled Monolayers, The Journal of Physical Chemistry B, vol. 101, pp.2143-2148, 1997/03/01 (1997).

DOI: 10.1021/jp9633411

Google Scholar

[5] E. M. Yeatman, Resolution and sensitivity in surface plasmon microscopy and sensing, Biosensors and Bioelectronics, vol. 11, pp.635-649, / (1996).

DOI: 10.1016/0956-5663(96)83298-2

Google Scholar

[6] C. E. H. Berger, R. P. H. Kooyman, and J. Greve, Resolution in surface plasmon microscopy, Review of Scientific Instruments, vol. 65, pp.2829-2836, (1994).

DOI: 10.1063/1.1144623

Google Scholar

[7] K. F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, et al., Imaging of Cell/Substrate Contacts of Living Cells with Surface Plasmon Resonance Microscopy, Biophysical Journal, vol. 76, pp.509-516, 1/ (1999).

DOI: 10.1016/s0006-3495(99)77219-x

Google Scholar

[8] H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object, Applied Optics, vol. 32, pp.2426-2430, 1993/05/01 (1993).

DOI: 10.1364/ao.32.002426

Google Scholar

[9] H. Kano, S. Mizuguchi, and S. Kawata, Excitation of surface-plasmon polaritons by a focused laser beam, Journal of the Optical Society of America B, vol. 15, pp.1381-1386, 1998/04/01 (1998).

DOI: 10.1364/josab.15.001381

Google Scholar

[10] K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy, Optics Letters, vol. 34, pp.971-973, 2009/04/01 (2009).

DOI: 10.1364/ol.34.000971

Google Scholar

[11] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, et al., Surface plasmon interference excited by tightly focused laser beams, Optics Letters, vol. 32, pp.2535-2537, 2007/09/01 (2007).

DOI: 10.1364/ol.32.002535

Google Scholar

[12] K. Watanabe, K. Matsuura, F. Kawata, K. Nagata, J. Ning, and H. Kano, Scanning and non-scanning surface plasmon microscopy to observe cell adhesion sites, Biomedical Optics Express, vol. 3, pp.354-359, 2012/02/01 (2012).

DOI: 10.1364/boe.3.000354

Google Scholar

[13] K. J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and B. Z. Gao, Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams, Optics Express, vol. 16, pp.20734-20741, 2008/12/08 (2008).

DOI: 10.1364/oe.16.020734

Google Scholar

[14] K. Watanabe, M. Ryosuke, G. Terakado, T. Okazaki, K. Morigaki, and H. Kano, High resolution imaging of patterned model biological membranes by localized surface plasmon microscopy, Applied Optics, vol. 49, pp.887-891, 2010/02/10 (2010).

DOI: 10.1364/ao.49.000887

Google Scholar

[15] S. Wang, X. Shan, U. Patel, X. Huang, J. Lu, J. Li, et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance, Proceedings of the National Academy of Sciences, vol. 107, pp.16028-16032, September 14, 2010 (2010).

DOI: 10.1073/pnas.1005264107

Google Scholar

[16] C. -H. Sung, D. Chauvat, J. Zyss, and C. -K. Lee, Enhanced detection of fluorescent nanospheres using two-channel radially polarized surface plasmon microscopy, Optics Letters, vol. 35, pp.2873-2875, 2010/09/01 (2010).

DOI: 10.1364/ol.35.002873

Google Scholar

[17] Q. Zhan, Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam, Optics Letters, vol. 31, pp.1726-1728, 2006/06/01 (2006).

DOI: 10.1364/ol.31.001726

Google Scholar

[18] H. Kano and W. Knoll, A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe, Optics Communications, vol. 182, pp.11-15, 8/1/ (2000).

DOI: 10.1016/s0030-4018(00)00794-x

Google Scholar

[19] J. Homola, Electromagnetic Theory of Surface Plasmons, in Surface Plasmon Resonance Based Sensors. vol. 4, J. Homola, Ed., ed: Springer Berlin Heidelberg, 2006, pp.3-44.

DOI: 10.1007/5346_013

Google Scholar