Time-Discrete Modelling of Industrial Compressed Air Systems Based on Equivalent Circuits

Article Preview

Abstract:

Compressed air systems (CAS) on industrial plants consist of air compressors, compressed air reservoirs, compressed air lines and auxillaries as dehumidifiers, dust collectors, pneumatic oilers and pressure controllers. It is assumed that given suitable dimensioning, those industrial compressed-air systems can be used for demand side management purpose. In industrial CAS energy is transmitted by means of pressure difference and volumetric flow rate of the transmission medium compressed air. Alike electric circuits, they consist of various functional components which are flowed through by the compressed air. Furthermore the application of Kirchhoffs laws is possible to those systems. Hence, approximation of the behavior of industrial CAS is possible by arranging and connecting those components in an equivalent circuit diagram. As additional state variables of compressed air as humidity, temperature as well as contents of water, oil and dust are also to be considered, modeling of the individual components is more extensive. A general, abstract approach for the description of the individual components in the form of blackbox representations is outlined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-26

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Schlichtermann, Entwicklung von Komponenten für den energieeffizienten Betrieb in der Automatisierung mit Schwerpunkt elektrische Antriebe : Verbundprojekt EnEffAH EnergieEffizienz in der Produktion im Bereich Antriebs- und Handhabungstechnik, ; Abschlussbericht, de, tech. rep., (2011).

Google Scholar

[2] T. Kajishima, K. Taira, Computational Fluid Dynamics, Springer International Publishing, (2017).

Google Scholar

[3] F. Moukalled, L. Mangani, M. Darwish, The Finite Volume Method in Computational Fluid Dynamics, Springer International Publishing, (2016).

Google Scholar

[4] A. Herrán-González et al., Modeling and simulation of a gas distribution pipeline network, in: Applied Mathematical Modelling, volume 33, no. 3, (2009), pp.1584-1600.

DOI: 10.1016/j.apm.2008.02.012

Google Scholar

[5] J. Szoplik, The Gas Transportation in a Pipeline Network, in: Advances in natural gas technology, ed. by H. A. Al-Megren, Rijeka, Croatia: InTech, (2012).

DOI: 10.5772/36902

Google Scholar

[6] A. J. Osiadacz, M. Chaczykowski, Comparison of isothermal and non-isothermal pipeline gas flow models, in: Chemical Engineering Journal, volume 81, no. 1-3, (2001), pp.41-51.

DOI: 10.1016/s1385-8947(00)00194-7

Google Scholar

[7] J. Rüdiger, Gasnetzsimulation durch Potentialanalyse, Helmut-Schmidt-Univ., Fak. für Elektrotechnik, (2009).

Google Scholar

[8] J. Rüdiger, J. Horn, A simulation algorithm for natural gas networks based on node potential analysis with modelling of real gas behaviour, in: IFAC Proceedings Volumes, volume 44, no. 1, (2011), 12249-12254.

DOI: 10.3182/20110828-6-it-1002.02972

Google Scholar

[9] A. Bermúdez et al., Simulation and Optimization Models of Steady-state Gas Transmission Networks, in: Energy Procedia, volume 64, (2015), pp.130-139.

DOI: 10.1016/j.egypro.2015.01.016

Google Scholar

[10] W. Tao, H. Ti, Transient analysis of gas pipeline network, in: Chemical Engineering Journal, volume 69, no. 1, (1998), pp.47-52.

DOI: 10.1016/s1385-8947(97)00109-5

Google Scholar

[11] M. Taherinejad, S. M. Hosseinalipour, R. Madoliat, Steady Flow Analysis and Modeling of the Gas Distribution Network using the Electrical Analogy, in: International Journal of Engineering, volume 27, no. 8 (B), (2014), 1269-1276.

Google Scholar

[12] H. Watter, Grundlagen der Fluidmechanik, in: Hydraulik und Pneumatik: Grundlagen und Übungen - Anwendungen und Simulation, Wiesbaden: Springer Fachmedien Wiesbaden, 2015, pp.55-84.

DOI: 10.1007/978-3-658-07860-7_3

Google Scholar