A New Engineering Technique in Roller Design to Prevent Thinning of Sheet in Roll Forming Process

Article Preview

Abstract:

These days sheet metal forming is a widely used in different industrial fields with large production volumes. Formability of metal sheets is limited by localized necking and plastic instability. In sheet metal forming processes like drawing and stamping the main challenge is thinning of the metal sheet in some regions. To reduce thinning of the sheet product, roll forming has been suggested instead of stamping process. Thinning strain can cause necking, tearing or wrinkling which are failure of the metal sheet. In this study a new engineering technique is proposed in order to prevent thinning of the steel galvanized hot coil commercial (SGHC) in roll forming process. An explicit finite element code, ABAQUS software, was used to simulate the roll forming process. The results show that the proposed technique has an important effect on thinning of the sheet and can reduce it significantly. Investigation on the second and third and fourth rollers show the effect of modified roller dimension as on reducing the thickness. These reductions in second, third and fourth rollers are from 4 percent to 0.5 percent, 2.8 to 1.4 percent and from 1.4 to 0.7 percent respectively. The reasons of the new techniques effect were also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

42-47

Citation:

Online since:

November 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Wang, Y. Yan, F. Jia, F. Han, Investigations of fracture on DP980 steel sheet in roll forming process, J. Manuf. Proc. 22 (2016) 177-184.

DOI: 10.1016/j.jmapro.2016.03.008

Google Scholar

[2] S. Curtze, V. T. Kuokkala, M. Hokka, P. Peura, Deformation behavior of TRIP and DP steels in tension at different temperatures over a wide range of strain rates, Mater. Sci. Eng.: A, 507 (2009) 124-131.

DOI: 10.1016/j.msea.2008.11.050

Google Scholar

[3] D. Wowk, K. Pilkey, An experimental and numerical study of prestrained AA5754 sheet in bending, J. Mater. Proc. Tech. 213 (2013) 1-10.

DOI: 10.1016/j.jmatprotec.2012.08.002

Google Scholar

[4] M. Habibnejad-korayem, M. K. Jain, R. K. Mishra, Large deformation of magnesium sheet at room temperature by preform annealing, part II: Bending, Mater. Sci. Eng.: A, 619 (2014) 378-383.

DOI: 10.1016/j.msea.2014.09.096

Google Scholar

[5] W. Xiong, W. Wang, M. Wan, X. Li, Geometric issues in V-bending electromagnetic forming process of 2024-T3 aluminum alloy, J. Manuf. Proc. 19 (2015) 171-182.

DOI: 10.1016/j.jmapro.2015.06.015

Google Scholar

[6] M. Luo, T. Wierzbicki, Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model, Int. J. Solid. Struct. 47 (2010) 3084-3102.

DOI: 10.1016/j.ijsolstr.2010.07.010

Google Scholar

[7] J. C. Park, D. Y. Yang, M. Cha, D. Kim, J. B. Nam, Investigation of a new incremental counter forming in flexible roll forming to manufacture accurate profiles with variable cross-sections, Int. J. Mach. Tool. Manuf. 86 (2014) 68-80.

DOI: 10.1016/j.ijmachtools.2014.07.001

Google Scholar

[8] Y. Yan, H. Wang, Q. Li, The inverse parameter identification of Hill 48 yield criterion and its verification in press bending and roll forming process simulations, J. Manuf. Proc. 20 (2015) 46-53.

DOI: 10.1016/j.jmapro.2015.09.009

Google Scholar

[9] A. Abvabi, B. Rolfe, P. Hodgson, M. Weiss, The influence of residual stress on a roll forming process, Int. J. Mech. Sci. 101 (2015) 124-136.

DOI: 10.1016/j.ijmecsci.2015.08.004

Google Scholar

[10] B. S. Bidabadi, H. M. Naeini, R. A. Tafti, S. Mazdak, Experimental investigation of the ovality of holes on pre-notched channel products in the cold roll forming, J. Mater. Proc. Tech. 225 (2015) 213-220.

DOI: 10.1016/j.jmatprotec.2015.06.008

Google Scholar

[11] Y. Yan, H. Wang, Q. Li, B. Qian, K. Mpofu, Simulation and experimental verification of flexible roll forming of steel sheets, Int. J. Adv. Manuf. Tech. 72 (2014) 209-220.

DOI: 10.1007/s00170-014-5667-0

Google Scholar

[12] S. GmbH. Metal forming handbook, Springer Science & Business Media, (1998).

Google Scholar

[13] S. Panton, J. Duncan, S. Zhu, Longitudinal and shear strain development in cold roll forming, J. Mater. Proc. Tech. 60 (1996) 219-224.

DOI: 10.1016/0924-0136(96)02333-3

Google Scholar

[14] M. Weiss, B. Abeyrathna, B. Rolfe, A. Abee, H. Wolfkamp, Effect of coil set on shape defects in roll forming steel strip, J. Manuf. Proc. 25 (2017) 8-15.

DOI: 10.1016/j.jmapro.2016.10.005

Google Scholar

[15] O. M. Badr, B. Rolfe, P. Hodgson, M. Weiss, Forming of high strength titanium sheet at room temperature, Mater. Des. 66 (2015) 618-626.

DOI: 10.1016/j.matdes.2014.03.008

Google Scholar

[16] L. Troive, L. Ingvarsson, Roll forming and the benefits of ultrahigh strength steel, Ironmak. Steelmak. 35 (2008) 251-253.

DOI: 10.1179/174328108x301714

Google Scholar