Mechanical Properties Including Fatigue of CP Ti and Ti-6Al-4V Alloys Fabricated by EBM Additive Manufacturing Method

Article Preview

Abstract:

The Electron Beam Melted (EBM) method is one of the attractive attention thing additive manufacturing methods. By using an EBM additive manufacturing method, CP Ti and Ti-6Al-4V specimen were fabricated with a certain processing parameters. The mechanical properties such as fatigue limit, tensile properties including microstructural characteristics of CP Ti and Ti-6Al-4V specimens fabricated by EBM were confirmed and were compared with the conventional Ti alloys. Additive manufacturing was obtained high strength by creating martensite due to rapid cooling. On the other hand, void occurrence cannot be avoided by the method of using powder, accordingly it had a low fatigue strength value. Therefore, this study focused on that the values of fatigue characteristics of the EBM specimens and conventional specimens were compared and analyzed. EBM CP Ti had good mechanical properties such as yield strength, ultimate tensile strength, elongation and fatigue limits, approximately as same as casting CP Ti. EBM Ti-6Al-4V showed good mechanical properties, but fatigue limits were lower than wroughtTi-6Al-4V. That resulted from the formation of several kinds of internal pores which caused to increase the crack initiation and propagation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

54-59

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Banerjee, and J. C. Williams, Perspectives on Titanium Science and Technology, Acta Mater. 61 (2013) 844-879.

Google Scholar

[2] L. A. Ola, O. C. Harrysson, J. M. Denis, R. C. Denis, A. Harvey, Direct metal fabrication of titanium implants with tailored materials and mechanical properties suing electron beam melting technology, Mater. Sci. Eng. C 28 (2008) 366-373.

DOI: 10.1016/j.msec.2007.04.022

Google Scholar

[3] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, second edition, Springer New York Heidelberg Dordrecht London, New York, (2009).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[4] E. M. Lawrence, et al., Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, J. Mater. Sci. Technol. 28(1) (2012) 1-14.

Google Scholar

[5] D. G. Lee, X. J. Mi, E. Kwan, Y. T. Lee, Bio-Compatible Properties of Ti-Nb-Zr Titanium Alloy with Extra Low Modulus, J. Biomater. Tissue Eng. 6 (2016) 798-801.

DOI: 10.1166/jbt.2016.1508

Google Scholar

[6] L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins, R. B. Wicker, Acta Materialia 58 (2010) 1887-1894.

DOI: 10.1016/j.actamat.2009.11.032

Google Scholar

[7] K. Rafi. H. Karthik, N. V. Thomas, L. Starr. and E. S. Brent, Mechanical property evaluation of Ti-6Al-4V parts made using Electron Beam Melting, Proc. Solid Freeform Fabrication Symposium (2012) 526-535.

Google Scholar

[8] M. Koike, K. Martinez, L. Guo, G. Chahine, R. Kovacevic, and T. Okabe, Evaluation of titanium alloy fabricated using electron beam melting system for dental applications, J. Mater. Process. Technol. 211 (2011) 1400-1408.

DOI: 10.1016/j.jmatprotec.2011.03.013

Google Scholar

[9] L. E. Murr, E. V. Esquivel, S. A. Quinones, S. M. Gaytan, M. I. Lopez, E. Y. Martinez, F. Medina, D. H. Hernandez, E. Martinez, J. L. Martinez, S. W. Stafford, D. K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R. B. Wicker, Microstructures and mechanical properties of electron beam-rapid manufactured Ti-6Al-4V biomedical prototypes compared to wrought Ti-6Al-4V, Mater. Character. 60 (2009).

DOI: 10.1016/j.matchar.2008.07.006

Google Scholar

[10] S. Biamino, A. Penna, U. Ackelid, S. Sabbadini, O. Tassa, P. Fino, M. Pavese, P. Gennaro, and C. Badini, Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstruct. Mech. Propert. Invest. Intermetall. 19 (2011) 776-781.

DOI: 10.1016/j.intermet.2010.11.017

Google Scholar

[11] C. W. Lin, C. P. Ju, and J. Lin, Comparison among Mechanical Properties of Investment-Cast c. p. Ti, Ti-6Al-7Nb and Ti-15Mo-1Bi Alloys, Mater. Trans. JIM 45 (2004) 3028-3032.

DOI: 10.2320/matertrans.45.3028

Google Scholar

[12] C. W. Lin, C. P. Ju, and J. Lin, A comparison of the fatigue behavior of cast Ti-7. 5Mo with c. p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys, Biomater. 26 (2005) 2899-2907.

DOI: 10.1016/j.biomaterials.2004.09.007

Google Scholar

[13] H. Gong, K. Rafi, H. Gu, G. D. Janaki Ram, T. Starr, and B. Stucker, Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting, Mater. Des. 86 (2015) 545-554.

DOI: 10.1016/j.matdes.2015.07.147

Google Scholar

[14] X. Shui, K. Yamanaka, M. Mori, Y. Nagata, K. Kurita, and A. Chiba, Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting, Mater. Sci. Eng. A 680 (2017) 239-248.

DOI: 10.1016/j.msea.2016.10.059

Google Scholar

[15] J. Gunther, D. Krewerth, T. Lippmann, S. Leuders, T. Troster, A. Weidner, H. Biermann, and T. Niendorf, Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime, Int. J. Fatigue 94 (2017) 236-245.

DOI: 10.1016/j.ijfatigue.2016.05.018

Google Scholar