[1]
K. Boz, T. Tobi, D. Vadas, M. Sauceau, J. Fages, G. Marosi, Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO2 assisted extrusion, eXPRESS. Polym. Lett. 10 (2016) 771-779.
DOI: 10.3144/expresspolymlett.2016.71
Google Scholar
[2]
R. A. A. A. Mohsen: Investigation of Reinforced Polystyrene Foam Waste with Natural or Synthetic Fibers (The American University in Cairo, 2014).
Google Scholar
[3]
X. Chen, J. Gao, Z. Fu, X. Chen, P. Yu, Open Cell Microcellular Foams of Poly (Lactic acid) Blend with Poly (Butylenes Succinate), Conference of SPE ANTEC Indianapolis (2016) 1856-1860.
Google Scholar
[4]
M. Nofar, C. B. Park, Poly (lactic acid) foaming, Prog. Polym. Sci. 10(39) (2014) 1721–1741.
DOI: 10.1016/j.progpolymsci.2014.04.001
Google Scholar
[5]
W. Zhai, Y. Ko, W. Zhu, A. Wong and C. B. Park, A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2, Int. J. Mol. Sci. 10(12) (2009) 5381-5397.
DOI: 10.3390/ijms10125381
Google Scholar
[6]
Y.M. Corre, A. Maazouz, J. Duchet, J. Reignier, Batch foaming of chain extended PLA with supercritical CO2: Influence of the rheological properties and the process parameters on the cellular structure, J. Supercrit. Fluid., 58 (1) (2011) 177–188.
DOI: 10.1016/j.supflu.2011.03.006
Google Scholar
[7]
T. Nampitch, T. Kaisone, P. Hanthanon, C. Wiphanurat, Compressive Properties of Polylactic Acid-based Nanocomposite Foams Reinforced with Coconut Fibers, Appl. Mech. Mater. 851 (2016) 19-25.
DOI: 10.4028/www.scientific.net/amm.851.19
Google Scholar
[8]
T. Nampitch, C. Wiphanura T. Kaisone, P. Hanthanon, Mechanical and Morphological Properties of Poly(Lactic Acid)/Bagasse Fiber Composite Foams, Appl. Mech. Mater. 851 (2016) 31-36.
DOI: 10.4028/www.scientific.net/amm.851.31
Google Scholar
[9]
W. Wang, D. Zhao, J. Yang, T. Nishi, K. Ito, X. Zhao, L. Zhang, Novel Slide-Ring Material/Natural Rubber Composites with High Damping Property, Sci. Rep. 6 (2016) 1-13.
DOI: 10.1038/srep22810
Google Scholar
[10]
P. Chamnanvatchakit, T. Prodpran1, S. Benjakul, S. Prasarpran, Use of Epoxidized Natural Rubber (ENR) for Property Improvement of Gelatin Film, Indian J. Sci. Technol. 8(36) (2015) 1-10.
DOI: 10.17485/ijst/2015/v8i36/54343
Google Scholar
[11]
C. Ruksakulpiwat1, W. Wanasut, A. Singkum, Y. Ruksakulpiwa, Cogon Grass Fiber-Epoxidized Natural Rubber Composites, Adv. Mat. Res. 747 (2013) 375-378.
DOI: 10.4028/www.scientific.net/amr.747.375
Google Scholar
[12]
M. V. G. Zimmermann, V. C. Brambilla, R. N. Brandalise, A. J. Zattera, Observations of the Effects of Different Chemical Blowing Agents on the Degradation of Poly (Lactic Acid) Foams in Simulated Soil, Mat. Res. 16 (6) (2013) 1266-1273.
DOI: 10.1590/s1516-14392013005000133
Google Scholar
[13]
G. Tian, H. Yuan, Y. Mu, C. He, S. Feng, Hydrothermal Reactions from Sodium Hydrogen Carbonate to Phenol. Org. Lett. 9(10) (2007) 2019–(2021).
DOI: 10.1021/ol070597o
Google Scholar
[14]
H. A. Pushpadass, Weber, R. W. Hanna, M. A. Expansion, morphological, and mechanical properties of starch–polystyrene foams containing various additives, Ind. Eng. Chem. Res. 47(14) (2008) 4736–4742.
DOI: 10.1021/ie071049h
Google Scholar
[15]
H. A. Pushpadass, R. W. Weber, J. J. Dumais, M. A. Hanna, Biodegradation characteristics of starch–polystyrene loose-fill foams in a composting medium, Biores. Tech. 101(19) (2010) 7258-7264.
DOI: 10.1016/j.biortech.2010.04.039
Google Scholar
[16]
N. Wang, J. Yu. P. R. Chang. M. Xiaofei. Influence of citric acid on the properties of glycerol-plasticized dry starch (DTPS) and DTPS/poly (lactic acid) blends. Starch-Starke 59 (9) (2007) 409–417.
DOI: 10.1002/star.200700617
Google Scholar