Growth and Characteristics of High Quality (200) and (111) Orientations Cubic Structure MgZnO Thin Films by Pulse Laser Deposition (PLD) Method

Article Preview

Abstract:

High quality (200) and (111) orientations cubic MgZnO thin films were made on (200) and (111) orientations MgO substrates separately under different condition with higher and lower migration energy of reactive atoms separately. The crystal quality of (111) orientation MgZnO thin film is higher than (200) one because of the stronger horizontal migration of atoms on (111) surface under high temperature condition, the surface of (200) orientation MgZnO thin film is smoother than (111) orientation one because of lower vertical growth speed of (200) MgZnO grains. The band gap of (111) orientation MgZnO thin film is smaller than (200) one because of more Zn atoms in (111) orientation MgZnO lattice than that in (200) ones. This paper gives an effective method to improve crystal quality of different orientation MgZnO thin film under different condition, which is meaningful in application of cubic MgZnO in different areas.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-67

Citation:

Online since:

January 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. W. Teng, J. F. Muth, Ü. Özgür, M. J. Bergmann, H. O. Everitt, A. K. Sharma, C. Jin, J. Narayan, Refractive indices and absorption coefficients of MgxZn1−xO alloys. Appl. Phys. Lett. 76 (2000) 979-981.

DOI: 10.1063/1.125912

Google Scholar

[2] J. Liang, H. Z. Wu, Y. F. Lao, D. J. Qiu, N. B. Chen, T. N. Xu, Applications of Cubic MgZnO Thin Films in Metal{Insulator{Silicon Structures. Chinese Phys. Lett. 21 (2004) 1135-1138.

DOI: 10.1088/0256-307x/21/6/044

Google Scholar

[3] P. N. Ni, C. X. Shan, B. H. Li, D. Z. Shen, High Mg-content wurtzite MgZnO alloys and their application in deep-ultraviolet lightemitters pumped by accelerated electrons. Appl. Phys. Lett 104 (2014) 032107-1-032107-4.

DOI: 10.1063/1.4862789

Google Scholar

[4] X. L. Du, Z. X. Mei, Z. L. Liu, Y. Guo, T. C. Zhang, Y. N. Hou, Z. Zhang, Q. K. Xue, A. Y. Kuznetsov, Controlled Growth of High-Quality ZnO-Based Films and Fabrication of Visible-Blind and Solar-Blind Ultra-Violet Detectors. Adv. Mater. 21 (2009).

DOI: 10.1002/adma.200901108

Google Scholar

[5] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, X. W. Fan, MgxZn1−xO-based photodetectors covering the whole solar-blind spectrum range. Appl. Phys. Lett. 94 (2009) 101902-1-101902-3.

DOI: 10.1063/1.3002371

Google Scholar

[6] L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, C. X. Shan, Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices. Appl. Phys. Lett, 95 (2009).

DOI: 10.1063/1.3238571

Google Scholar

[7] S. Han, J. Y. Zhang, Z. Z. Zhang, Y. M. Zhao, L. K. Wang, J. Zheng, B. Yao, D. X. Zhao, D. Z. Shen, Mg0. 58Zn0. 42O Thin Films on MgO Substrates with MgO Buffer Layer. ACS Appl. Mater. Inter. 2 (2010) 1918-(1921).

DOI: 10.1021/am100249a

Google Scholar

[8] J. Huso, H. Che, D. Thapa, L. M. John, M. G. Norton, L. Bergman, M. G. Norton, L. Bergman. Phonon dynamics and anharmonicity in phase segregated structural domains of MgZnO film. Appl. Phys. Lett 104 (2014) 031908-1-031908-5.

DOI: 10.1063/1.4863094

Google Scholar

[9] S. Han, Y. K. Shao, Y. M. Lu, P. J. Cao, F. Jia, Y. X. Zeng, W. J. Liu, D. L. Zhu, X. C. Ma, Effect of oxygen pressure on preferred deposition orientations and optical properties of cubic MgZnO thin films on amorphous quartz substrate. J. Alloys. Compd. 559 (2013).

DOI: 10.1016/j.jallcom.2013.01.056

Google Scholar

[10] G. C. Hu, C. X. Shan, X. H. Xie, Z. Z. Zhang, B. H. Li, K. W. Liu, L. Liu, D. Z. Shen, Plasma induced deep ultraviolet emissions from MgZnO films. J. Lumin. 156 (2014) 188–191.

DOI: 10.1016/j.jlumin.2014.08.009

Google Scholar

[11] L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, J. Y. Zhang, Solid. State. Commun. 149 (2009) 2021–(2023).

Google Scholar

[12] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, O. W. Holland, Optical and structural properties of epitaxial MgxZn1−xO alloys. Appl. Phys. Lett 75 (1999) 3327-3329.

DOI: 10.1063/1.125340

Google Scholar

[13] J. G. Yoon, K. Kim, Growth of (111) oriented MgO film on Si substrate by the sol-gel method. Appl. Phys. Lett. 66 (1995) 2661-2663.

DOI: 10.1063/1.113117

Google Scholar

[14] X. Y. Chen, B. Yang, Z. G. Liu, L. J. Shi, Growth of completely(110) and (111) oriented MgO films on H-terminated_100/silicon substrate by pulsed laser deposition. Appl. Surf. Sci. 135 (1998) 233–237.

DOI: 10.1016/s0169-4332(98)00291-8

Google Scholar

[15] S. Han, Y. K. Shao, Y. M. Lu, P. J. Cao, F. Jia, Y. X. Zeng, W. J. Liu, D. L. Zhu, X. C. Ma, Effect of different migration energy for reaction atoms on growth orientation and optical absorption characteristics of cubic MgZnO thin films under different pressure by PLD method. J. Cryst. Growth. 408 (2014).

DOI: 10.1016/j.jcrysgro.2014.09.023

Google Scholar

[16] A. Chin, K. Y. Hsieh, H. Y. Lin, Spontaneous formation of Al rich and Ga rich Al x Ga1−x As/Al y Ga1−y As superlattice and strong enhancement of optical properties. Appl. Phys. Lett. 65 (1994) 1921-(1923).

DOI: 10.1063/1.112817

Google Scholar

[17] Y. Nomura, Y. Morishita, S. Goto, Y. Katayama, T. Isu, Surface diffusion length of Ga adatoms on (1̄1̄1̄)B surfaces during molecular beam Epitaxy. Appl. Phys. Lett. 64 (1994) 1123-1125.

DOI: 10.1063/1.110826

Google Scholar

[18] S. S. Hullavarad, N. V. Hullavarad, D. E. Pugel, S. Dhar, T. Venkatesan, R. D. Vispute. Structural and chemical analysis of pulsed laser deposited MgxZn1−xO hexagonal (x = 0. 15, 0. 28) and cubic (x = 0. 85) thin films. Opt. Mater. 30 (2008).

DOI: 10.1016/j.optmat.2007.05.027

Google Scholar