[1]
D. Hongqiang, H. Yuanfei, W. Lu, W. Liqiang, M. Jianwei, D. Zhang. Configuration design and fabrication of laminated titanium matrix composites, Materials and Design. 99 (2016) 219–224.
DOI: 10.1016/j.matdes.2016.03.061
Google Scholar
[2]
A. Baradeswaran, S.C. Vettivel, A. Elaya Perumal, Experimental investigation on mechanical behaviour, modeling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Materials and Design. 63 (2014) 620–63.
DOI: 10.1016/j.matdes.2014.06.054
Google Scholar
[3]
Y. Q Wang, J. Song, Dry sliding wear behavior of Al2O3 fiber and SiC particle reinforced aluminium based MMCs fabricated by squeeze casting method, Tans. Nonferrous Met .Soc. China. 21 (2011) 1441-1448.
DOI: 10.1016/s1003-6326(11)60879-0
Google Scholar
[4]
C. Antony Vasantha kumar, J. Selwin Rajadurai, Influence of rutile (TiO2) content on wear and micro-hardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy, Trans. Nonferrous Met. Soc. China. 26 (2016) 63−73.
DOI: 10.1016/s1003-6326(16)64089-x
Google Scholar
[5]
S.K. Thakur, M. Gupta, Improving mechanical performance of Al by using Ti as reinforcement, Composites Part A. 38 (2007) 1010-1018.
DOI: 10.1016/j.compositesa.2006.06.014
Google Scholar
[6]
I. Mobasherpour, A.A. ToFigh, M. Ebrahimi, Effect of nano-size Al2O3 reinforcement on the mechanical behavior of synthesis 7075 aluminum alloy composites by mechanical alloying, Materials Chemistry and Physics. 138 (2013) 535-541.
DOI: 10.1016/j.matchemphys.2012.12.015
Google Scholar
[7]
F. Toptan, I. Kerti, L.A. Rocha, Reciprocal dry sliding wear behaviour of B4Cp reinforced aluminium alloy matrix composites Wear. 290 (2012) 291 :74–85.
DOI: 10.1016/j.wear.2012.05.007
Google Scholar
[8]
B.D Agarwal, L.J. Broutman, Analysis and performance of fiber Composites, 2nd edition Jhonwieley and Sons. New York. (1990).
Google Scholar
[9]
S Gangwar, A. Patnaik, I. K. Bhat.. Tribological and Microstructure Behavior of Quicklime (CaO) Filled Silicon Bronze Alloy for Bearing Material, Silicon. (2016) DOI 10.1007/s12633-015-9352-1.
DOI: 10.1007/s12633-015-9352-1
Google Scholar
[10]
A. Baradeswaran, A. Elaya Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C Composites, Composites. Part B 54 (2013) 146–152.
DOI: 10.1016/j.compositesb.2013.05.012
Google Scholar
[11]
Y. Liu, Z. Han, H. Cong, Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite Wear. 268 (2010) 976–983.
DOI: 10.1016/j.wear.2009.12.027
Google Scholar
[12]
K. Soorya Prakash, P. balasundar, S. nagaraja, P.M. gopal, V. kaviman, Mechanical and wear behaviour of mg–sic–gr hybrid composites, journal of magnesium and alloys. 4 (2016) 197–206.
DOI: 10.1016/j.jma.2016.08.001
Google Scholar
[13]
A. Renza, I. Khadera, A. Kailera, Tribo chemical wear of cutting-tool ceramics in sliding Contact against a nickel-base alloy, Journal of the European Ceramic Society. 36 (2016) 705–717.
DOI: 10.1016/j.jeurceramsoc.2015.10.032
Google Scholar
[14]
P. Sharma, D. Khandujaa, S. Sharma, dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology, j materres technol 5(1) (2016) 29–36.
DOI: 10.1016/j.jmrt.2015.05.001
Google Scholar
[15]
G. Gautam, N. Kumar, A. Mohan, R.K. Gautam, S. Mohan, Tribology and surface topography of tri-aluminide reinforced composites, Tribology International. 97 (2016) 49–58.
DOI: 10.1016/j.triboint.2016.01.014
Google Scholar
[16]
B. Ashok Kumar, N. Murugan, I. Dinaharan,. Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite, Trans Nonferrous Met. Soc. China. 24 (2014) 2785−2795.
DOI: 10.1016/s1003-6326(14)63410-5
Google Scholar
[17]
C. Antony Vasantha Kumar, J. Selwin Rajadurai, Influence of rutile (TiO2) content on wear and microhardness characteristics of aluminium-based hybrid composites synthesized by powder metallurgy Trans, Nonferrous Met. Soc. China. 26 (2016) 63−73.
DOI: 10.1016/s1003-6326(16)64089-x
Google Scholar
[18]
I. Dinaharan, N. Murugan, Dry sliding wear behavior of AA6061/ZrB2 in-situ composite, Trans. Nonferrous Met. Soc. China. 22 (2012) 810-818.
DOI: 10.1016/s1003-6326(11)61249-1
Google Scholar
[19]
B. Selvam, P. Marimuthu, R. Narayanasamy, V. Anandakrishnan, K.S. Tun, M. Gupta, M. Kamaraj, Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites, Materials and Design. 58 (2014) 475–481.
DOI: 10.1016/j.matdes.2014.02.006
Google Scholar
[20]
H. Chi, L. Jiang, G. Chen, Dry sliding friction and wear behavior of (TiB2+h-BN)/2024Al Composites, Materials and Design. 87 (2015) 960–968.
DOI: 10.1016/j.matdes.2015.08.088
Google Scholar
[21]
N. Mathan Kumar, S. Senthil Kumaran, L.A. Kumaraswamidhas, Wear behaviour of Al 2618 alloy reinforced with Si3N4, AlN and ZrB2 in situ composites at elevated temperatures, Alexandria Engineering Journal. 55 (2016) 19–36.
DOI: 10.1016/j.aej.2016.01.017
Google Scholar
[22]
S. Baskaran, V. Anandakrishnan, Muthukannan Duraiselvam,. Investigations on dry sliding wear behavior of in situ casted AA7075–TiC metal matrix composites by using Taguchi technique, Materials and Design. 60 (2014) 184–192.
DOI: 10.1016/j.matdes.2014.03.074
Google Scholar
[23]
A.B. Kumar, N. Murugan, I. Dinaharan, Dry sliding wear behavior of stir cast AA6061-T6/AlNp composite, Trans. Nonferrous Met. Soc. China. (2014) 2785−2795.
DOI: 10.1016/s1003-6326(14)63410-5
Google Scholar
[24]
A. Baradeswaran, S.C. Vettivel, A. Elaya Perumal, Experimental investigation on mechanical behaviour, modeling and optimization of wear parameters of B4C and graphite reinforced aluminium hybrid composites, Materials and Design. 63 (2014).
DOI: 10.1016/j.matdes.2014.06.054
Google Scholar
[25]
C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites, Tribology International. 43(2010) 623–634.
DOI: 10.1016/j.triboint.2009.09.011
Google Scholar
[26]
K. Soorya Prakash, A. Kanagaraj, P.M. Gopal, Dry sliding wear characterization of Al 6061/rock dust composite, Trans. Nonferrous Met. Soc. China. 25 (2015) 3893−3903.
DOI: 10.1016/s1003-6326(15)64036-5
Google Scholar
[27]
A. Renza, I. Khadera, A. Kailera, Tribo chemical wear of cutting-tool ceramics in sliding Contact against a nickel-base alloy, Journal of the European Ceramic Society. 36 (2016) 705–717.
DOI: 10.1016/j.jeurceramsoc.2015.10.032
Google Scholar
[28]
P. JIN, G. CHEN, L. HAN, Dry sliding friction and wear behaviors of Mg2B2O5 whisker reinforced 6061Al matrix Composites, Trans Nonferrous Met Soc China. 24 (2014) 49–57.
DOI: 10.1016/s1003-6326(14)63027-2
Google Scholar
[29]
S. Natarajan, R. Narayanasamy, S.P. Kumaresh Babu, G. Dinesh, B. Anil Kumar, K. Sivaprasad, Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures, A dvances in Tribology Volume. Article ID 837469, 8 pages.
DOI: 10.1016/j.matdes.2008.09.037
Google Scholar
[30]
A.K. Srivastava, Karabi Das, the abrasive wear resistance of TIC and (Ti,W)C-reinforced Fe–17Mn austenitic steel matrix composites, Tribology International. 43 (2010) 944–950.
DOI: 10.1016/j.triboint.2009.12.057
Google Scholar
[31]
T. Rajmohan, K. Palanikumar, S. Ranganathan, Evaluation of mechanical and wear properties of hybrid aluminium matrix composites, Trans. Nonferrous Met. Soc. China. 23 (2013) 2509−2517.
DOI: 10.1016/s1003-6326(13)62762-4
Google Scholar