[1]
R.S. Mishra, Z.Y. Ma, Friction Stir Welding and Processing, Material Science and Engineering R, vol. 50, 1-2, 2005, pp.1-78.
Google Scholar
[2]
G Bussu, P. E Irving, The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminum joints, International Journal of Fatigue, vol. 25, 1, 2003, pp.77-88.
DOI: 10.1016/s0142-1123(02)00038-5
Google Scholar
[3]
R John, K. V Jata, K Sadananda, Residual stress effects on near-threshold fatigue crack growth in friction stir welded aerospace alloys, International Journal of Fatigue, vol. 25, 9-11, 2003, pp.939-948.
DOI: 10.1016/j.ijfatigue.2003.08.002
Google Scholar
[4]
K. V. Jata, K. K. Sankaran, J. J. Ruschau, Friction-stir welding effects on microstructure and fatigue of aluminium alloy 7050-T7451, Metallurgical and Materials Transactions A, vol. 31, 9, 2000, pp.2181-92.
DOI: 10.1007/s11661-000-0136-9
Google Scholar
[5]
M Guerra, C Schmidt, J. C McClure, L. E Murr, A. C Nunes, Flow patterns during friction stir welding, Materials characterization, vol. 49, 2, 2003, pp.95-101.
DOI: 10.1016/s1044-5803(02)00362-5
Google Scholar
[6]
M Ericsson, R Sandastrom, Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, International Journal of Fatigue, vol. 25, 12, 2003, pp.1379-1378.
DOI: 10.1016/s0142-1123(03)00059-8
Google Scholar
[7]
T. J. linert, W. L. Stellwag, JR., B. B. Grimmett, AND R. W. Warke, friction stir welding studies on mild steel, Supplement to the welding journal, January, 2003, p.1 S-9 S.
Google Scholar
[8]
ASTM E8/E8M-09. Standard test methods for tension testing of metallic materials1. Pennsylvania (United States): ASTM International; December (2009).
Google Scholar
[9]
Liu HJ, Chen YC, Feng JC, Effect of heat treatment on tensile properties of Friction Stir Welded joints of 2219-T6 aluminium alloy, Materials Science and Technology, vol. 22, 2, 2006, pp.237-241.
DOI: 10.1179/026708306x81513
Google Scholar
[10]
Srivatsan TS, Satish Vasudevan, Lisa Park, The tensile deformation and fracture behavior of Friction Stir Welded aluminum alloy 2024, Materials Science and Engineering A, 466 , 2007, pp.235-245.
DOI: 10.1016/j.msea.2007.02.100
Google Scholar
[11]
P. Cavaliere, A. De Santis, F. Panella, A. Squillace, Effect of Welding Parameters on Mechanical and Microstructural Properties of Dissimilar AA6082-AA2024 joints produced by Friction Stir Welding, Materials and Design vol. 30, 2008, pp.609-616.
DOI: 10.1016/j.matdes.2008.05.044
Google Scholar
[12]
Sato YS, Kokawa H, Distribution of tensile property and microstructure in Friction Stir Weld of 6063 aluminum, Metallurgical and Materials Transactions A, 32, 2001, pp.3023-3031.
DOI: 10.1007/s11661-001-0177-8
Google Scholar
[13]
Chen Y, Liu H, Feng J, Friction Stir Welding characteristics of different heat treated state 2219 aluminium alloy plates, Materials Science and Engineering A, 420, 2006, pp.21-25.
DOI: 10.1016/j.msea.2006.01.029
Google Scholar
[14]
Liu G, Murr LE, Niou CS, McClure JC, Vega FR, Microstructural aspects of the Friction-Stir Welding of 6061-T6 aluminum, Scripta Materialis, vol. 37, 3, 1997, pp.355-361.
DOI: 10.1016/s1359-6462(97)00093-6
Google Scholar