Predicting the Deposition Efficiency of Plasma Sprayed Alumina Coatings on AZ31B Magnesium Alloy by Response Surface Methodology

Article Preview

Abstract:

Plasma sprayed ceramic coatings are successfully employed in many industrial applications, where high wear and corrosion resistance with thermal insulation are needed. Plasma spray parameters such as power, stand-off distance and powder feed rate have significant influence on coating characteristics like deposition efficiency. This paper presents the use of statistical techniques specially response surface methodology (RSM), analysis of variance, and regression analysis to develop empirical relationships to predict deposition efficiency of plasma sprayed alumina coatings on AZ31B magnesium alloy. The developed empirical relationships can be efficiently used to predict deposition efficiency of plasma sprayed alumina coatings at 95% confidence level. Response graphs and contour plots were constructed to identify the optimum plasma spray parameters to attain maximum deposition efficiency in alumina coatings. Further, correlating the spray parameters with coating properties permits the identification of characteristics regime to achieve desired quality of coatings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-81

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.L. Song, Recent progress in the corrosion and protection of magnesium alloys. J. Adv. Eng. Mater. 7 (2005) 563-586.

DOI: 10.1002/adem.200500013

Google Scholar

[2] Ximei Wang, Liqun Zhu, Xiang He, Fenglou Sun, Effect of cerium additive on aluminum-based chemical conversion coating on AZ91D magnesium alloy, Appl. Surf. Sci. 280 (2013) 467-473.

DOI: 10.1016/j.apsusc.2013.05.012

Google Scholar

[3] Feng LIU, Da-yong SHAN, Ying-wei SONG, En-hou HAN, Formation process of composite plasma electrolytic oxidation coating containing zirconium oxides on AM50 magnesium alloy, Trans. Nonferrous Met. Soc. China. 21 (2011) 943-948.

DOI: 10.1016/s1003-6326(11)60805-4

Google Scholar

[4] M.H. Lee, Y.W. Kim, K.M. Lim, S.H. Lee, and K.M. Moon, Electrochemical evaluation of zinc and magnesium alloy coatings deposited on electrogalvanized steel by PVD. Trans. Nonferr. Met. Soc. China. 23 (2013) 876-880.

DOI: 10.1016/s1003-6326(13)62542-x

Google Scholar

[5] Yaqiong Ge, Wenxian Wang, Xin Wang, Zeqin Cui, Bingshe Xu, Study on laser surface remelting of plasma-sprayed Al–Si/1wt% nano-Si3N4 coating on AZ31B magnesium alloy, Appl. Surf. Sci, 273 (2013) 122-127.

DOI: 10.1016/j.apsusc.2013.01.204

Google Scholar

[6] R. Suryanarayanan, Plasma Spraying: Theory and Applications, World Scientific Publishing, New York, (1993).

Google Scholar

[7] S. T. Aruna, N. Balaji, Jyothi Shedthi, and V. K. William Grips, Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings, Surf. Coat. Technol. 208(2012).

DOI: 10.1016/j.surfcoat.2012.08.016

Google Scholar

[8] T. Lampke, D. Meyer, G. Alisch, D. Nickel, I. Scharf, L. Wagner, and U. Raa, . Alumina coatings obtained by thermal spraying and plasma anodising — A comparison, Surf. Coat. Technol. 206(2011) 2012-(2016).

DOI: 10.1016/j.surfcoat.2011.09.006

Google Scholar

[9] E. Lugscheider, F. Ladru, V. Gourlaouen, and C. Gualco, Enhanced Atmospheric Plasma Spraying of Thick TBCs by Improved Process Control and Deposition Efficiency, Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet, Ed., May 25-29, 1998 (Nice, France), ASM International, (1998).

DOI: 10.31399/asm.cp.itsc1998p1583

Google Scholar

[10] J.R. Mawdsley, Y.J. Su, K.T. Faber, T.F. Bernecki, Optimization of small-particle plasma-sprayed alumina coatings using designed experiments, Mater. Sci. Eng. A. 308 (2001) 189-199.

DOI: 10.1016/s0921-5093(00)01992-4

Google Scholar

[11] J.F. Li, H. Liao, B. Normand, C. Cordier, G. Maurin, J. Foct, C. Coddet, Uniform design method for optimization of process parameters of plasma sprayed TiN coatings, Surf. Coat. Technol. 176 (2003) 1-13.

DOI: 10.1016/s0257-8972(03)00019-7

Google Scholar

[12] J.F. Li, H.L. Liao, C.X. Ding, C. Coddet, Optimizing the plasma spray process parameters of yttria stabilized zirconia coatings using a uniform design of experiments, J. Mater. Proc. Technol. 160 (2005) 34-42.

DOI: 10.1016/j.jmatprotec.2004.02.039

Google Scholar

[13] F. Azarmi, T.W. Coyle, J. Mostaghimi, Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 coating, J. Therm. SprayTechnol. 17 (2008) 144-155.

DOI: 10.1007/s11666-007-9142-4

Google Scholar

[14] Christel Pierlot, Lech Pawlowski, Muriel Bigan, Pierre Chagnon, Design of experiments in thermal spraying: a review, Surf. Coat. Technol. 202 (2008) 4483-4490.

DOI: 10.1016/j.surfcoat.2008.04.031

Google Scholar

[15] C.S. Ramachandran, V. Balasubramanian, P.V. Ananthapadmanabhan, Multi objective optimization of atmospheric plasma spray process parameters to deposit yttria-stabilized zirconia coatings using response surface methodology, J. Therm. SprayTechnol. 20 (2011).

DOI: 10.1007/s11666-010-9604-y

Google Scholar

[16] D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian,. Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology, Prog. Nat. Sci.: Mater. Int. 22 (2012).

DOI: 10.1016/j.pnsc.2012.09.004

Google Scholar

[17] Robert C. Tucker, Jr., Thermal Spray Coatings, in : ASM Hand book, Surface Engineering, 5, 497.

Google Scholar

[18] Metallographic Preparation of Thermal Spray Coatings, Application Notes from (www. struers. com).

Google Scholar

[19] ASTM B276-05, Standard test method for apparent porosity in cemented carbides, annual book of ASTM standards, ASTM international, (2010).

Google Scholar

[20] Kai Yanga, Jian Ronga, Chenguang Liua, Huayu Zhao, Shunyan Tao, Chuanxian Ding, Study on erosion–wear behavior and mechanism of plasma-sprayed alumina-based coatings by a novel slurry injection method, Tribol. Intl. 93 (2016) 29-35.

DOI: 10.1016/j.triboint.2015.09.007

Google Scholar

[21] S. Rajakumar, C. Muralidharan, V. Balasubramanian, Statistical analysis to predict grain size and hardness of the weld nugget of friction –stir- welded AA6061-T6 aluminium alloy joints, Int.J. Adv. Manuf. Technol. 57 (2011) 151-165.

DOI: 10.1007/s00170-011-3279-5

Google Scholar

[22] D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons Ltd, New Delhi, (2007).

Google Scholar

[23] C.S. Ramachandran, V. Balasubramanian, P.V. Ananthapadmanabhan, V. Viswabaskaran, Understanding the dry sliding wear behavior of atmospheric plasma sprayed rare earth oxide coatings, Mater. Des. 39 (2012) 234-252.

DOI: 10.1016/j.matdes.2012.02.040

Google Scholar

[24] R.H. Myers, D.C. Montgomery, Response Surface Methodology, John Wiley & Sons, Inc., New York, (2002).

Google Scholar

[25] T. Valente, Statistical Evaluation of Vicker's Indentation Test Results for Thermally Sprayed Materials, Surf. Coat. Technol. 90 (1997) 14-20.

DOI: 10.1016/s0257-8972(96)03077-0

Google Scholar

[26] A.K. Lakshminarayanan, V. Balasubramanian, R. Varahamoorthy, and S. Babu, Predicting the Dilution of Plasma Transferred Arc Hardfacing of Stellite on Carbon Steel using Response Surface Methodology, Met. Mater. Int. 14 (2008) 779-789.

DOI: 10.3365/met.mat.2008.12.779

Google Scholar

[27] H. Guo, S. Kuroda, and H. Murakami, Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings, J. Am. Ceram. Soc. 89 (2006) 1432-1439.

DOI: 10.1111/j.1551-2916.2005.00912.x

Google Scholar

[28] G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, Low Conductivity Plasma Sprayed Thermal Barrier Coating Using Hollow PSZ Spheres: Correlation Between Thermophysical Properties and Microstructure, Surf. Coat. Technol. 202 (2008).

DOI: 10.1016/j.surfcoat.2007.08.042

Google Scholar

[29] S. Karthikeyana, V. Balasubramanian, R. Rajendranc, Developing empirical relationships to estimate porosity and microhardness of plasma-sprayed YSZ coatings, Ceram. Int. 40 (2014) 3171-3183.

DOI: 10.1016/j.ceramint.2013.09.125

Google Scholar