[1]
A.K. Shukla, V.M.J. Sharma, S.V.S.N. Murty, P.R. Narayanan, S.C. Sharma, Integrity of Structural and Thermo-Structural Materials for Indian Space Programme, Procedia Engineering 86 (2014) 8-17.
DOI: 10.1016/j.proeng.2014.11.005
Google Scholar
[2]
P. Dechaumphai, E.A. Thornton, Improved Finite Element Methodology for Integrated Thermal Structural Analysis, NASA Contractor Report 3635, Tech Library Kafb. Nm. (1982).
Google Scholar
[3]
R. Rolfes, K. Rohwer, Integrated Thermal and Mechanical Analysis of Composite Plates and Shells, Composites Science and Technology 60 (2000) 2097-2106.
DOI: 10.1016/s0266-3538(00)00117-2
Google Scholar
[4]
J. Noack, R. Rolfes, J. Tessmer, New Layerwise Theories and Finite Elements for Efficient Thermal Analysis of Hybrid Structures, Computers and Structures 81 (2003) 2525-2538.
DOI: 10.1016/s0045-7949(03)00300-6
Google Scholar
[5]
Y.X. Zhang, C.H. Yang, Recent Developments in Finite Element Analysis for Laminated Composite Plates, Composite Structures 88 (2009) 147–157.
DOI: 10.1016/j.compstruct.2008.02.014
Google Scholar
[6]
M. Cinefra, S. Valvano, E. Carrera, Heat conduction and Thermal Stress Analysis of Laminated Composites by a Variable Kinematic MITC9 Shell Element, Curved and Layer. Struct. 2 (2015) 301–320.
DOI: 10.1515/cls-2015-0017
Google Scholar
[7]
X. Yangjian, T. Daihui, D. Haiyang, Convective Heat Transfer Steady Heat Conduction and Thermal Stress in a Ceramic/FGM/Metal Composite EFBF Plate, Journal of Software 6(2) (2011).
DOI: 10.1109/ifita.2009.574
Google Scholar
[8]
M. Cinefra, E. Carrera, Thermo-Mechanical Analysis of Functionally Graded Structures via Refined Shell Finite Elements, Mechanics of Nano, Micro and Macro Composite Structures (2012).
DOI: 10.1016/j.compstruct.2011.08.006
Google Scholar
[9]
M. Kayhani, M. Nourouzi , A. Amiri Delooei, An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition, World Academy of Science, Engineering and Technology 70 (2010).
DOI: 10.1016/j.ijheatmasstransfer.2012.04.012
Google Scholar
[10]
M. Bouazza, K. Amara, Analysis of Laminated Plates Subjected to Thermal/Mechanical Loads, European Journal of Academic Essays 1(7) (2014) 1-4.
Google Scholar
[11]
S. Pachauri, A.S. Jatav, Thermal Stress Evaluation of Thin Isotropic Composite Plates using Classical Laminated Plate Theory, International Journal of Science, Engineering, and Technology, 2(6) (2014) 1077-1091.
Google Scholar
[12]
Y. M. Ghugal, S. K. Kulkarni, Flexural Analysis of Cross-Ply Laminated Plates Subjected to Nonlinear Thermal and Mechanical Loadings, Acta Mech 224 (2013) 675–690.
DOI: 10.1007/s00707-012-0774-1
Google Scholar
[13]
B.M. Irons, The Semiloof Shell Element, in: D.G. Ashwell and R.H. Gallaher (Eds.), Proc. of the Finite Elements for Thin shells and Curved Members, John Wiley and Sons, London, 1976, 197-222.
Google Scholar
[14]
R.K. Thangaratnam, Palaninathan, J. Ramachandran, Thermal Stress Analysis of Laminated Composite Plates and Shells, Computers and Structures 30 (6) (1988) 1403-1411.
DOI: 10.1016/0045-7949(88)90204-0
Google Scholar
[15]
N. Mukherjee, P. K. Sinha, A Comparative Finite Element Heat Conduction Analysis of Laminated Composite Plates, Computers and Structures 52 (3) (1994) 505-510.
DOI: 10.1016/0045-7949(94)90236-4
Google Scholar
[16]
M.S. Singh, K. Thangaratnam, Analysis of Functionally Graded Plates and Shells: Stress, Buckling and Free Vibration, Journal of Aerospace Sciences and Technology 66(2) (2014) 127-136.
Google Scholar
[17]
E.A. Baskharone, The Finite Element Method with Heat Transfer and Fluid Mechanics Applications, first ed., Cambridge University Press, New York, (2014).
Google Scholar