A Review on Methods of Productivity Improvement in Solar Desalination

Article Preview

Abstract:

Population density and automation is the main reason for the demand of drinking water. Water purification without affecting an ecosystem is the important need for daily life. Desalination is the best and effective way to satisfy the demand of fresh water. It is the most effective application of the solar energy. There are many conventional and non-conventional techniques available to make drinking water from the saline water. Among these solar desalination proves to be both economical and eco-friendly system particularly for rural areas. Solar stills are simple device which is used to provide pure water from the saline water by the principle of evaporation and condensation. This article reviews on the several research done on the solar stills to enhance productivity. Different designs of solar still and energy storage materials have been used to increase the yield and also this study proved the fact that efficiency of the solar still is majorly influenced by design and operating parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

414-429

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. U. Haruna, M. Yerima, A. D. Pukuma, and I. I. Sambo, Experimental Investigation Of The Performance Of Basin Type Single-Slope Solar Still, vol. 3, no. 3, (2014).

Google Scholar

[2] O. Badran, Theoretical Analysis of Solar Distillation Using Active Solar Still, Int. J. Therm. Environ. Eng., vol. 3, no. 2, p.113–120, (2010).

DOI: 10.5383/ijtee.03.02.009

Google Scholar

[3] S. Abdallah, O. Badran, and M. M. Abu-khader, Performance evaluation of a modified design of a single slope solar still, vol. 219, p.222–230, (2008).

DOI: 10.1016/j.desal.2007.05.015

Google Scholar

[4] I. Al-Hayeka and O. O. Badran, The effect of using different designs of solar stills on water distillation, Desalination, vol. 169, no. 2, p.121–127, (2004).

DOI: 10.1016/j.desal.2004.08.013

Google Scholar

[5] K. K. Murugavel, P. Anburaj, R. S. Hanson, and T. Elango, Progresses in inclined type solar stills, Renew. Sustain. Energy Rev., vol. 20, p.364–377, (2013).

DOI: 10.1016/j.rser.2012.10.047

Google Scholar

[6] P. Patel, A. S. Solanki, U. R. Soni, and A. R. Patel, A Review to Increase the Performance of Solar Still : Make It Multi Layer Absorber, p.173–177.

Google Scholar

[7] G. M. Ayoub and L. Malaeb, Economic feasibility of a solar still desalination system with enhanced productivity, Desalination, vol. 335, no. 1, p.27–32, (2014).

DOI: 10.1016/j.desal.2013.12.010

Google Scholar

[8] V. Velmurugan, M. Gopalakrishnan, R. Raghu, and K. Srithar, Single basin solar still with fin for enhancing productivity, Energy Convers. Manag., vol. 49, no. 10, p.2602–2608, (2008).

DOI: 10.1016/j.enconman.2008.05.010

Google Scholar

[9] A. A. El-Sebaii, M. R. I. Ramadan, S. Aboul-Enein, and M. El-Naggar, Effect of fin configuration parameters on single basin solar still performance, Desalination, vol. 365, p.15–24, (2015).

DOI: 10.1016/j.desal.2015.02.002

Google Scholar

[10] A. G. M. Ibrahim and S. E. Elshamarka, ScienceDirect Performance study of a modified basin type solar still, Sol. Energy, vol. 118, p.397–409, (2015).

DOI: 10.1016/j.solener.2015.06.013

Google Scholar

[11] A. A. Fatani and G. M. Zaki, Pergamon, vol. 4, no. 4, (1994).

Google Scholar

[12] V. Velmurugan and K. Srithar, Solar stills integrated with a mini solar pond — analytical simulation and experimental validation, Desalination, vol. 216, no. 1–3, p.232–241, (2007).

DOI: 10.1016/j.desal.2006.12.012

Google Scholar

[13] A. E. Kabeel, Review of researches and developments on solar stills, DES, vol. 276, no. 1–3, p.1–12, (2011).

Google Scholar

[14] R. Gugulothu, N. S. Somanchi, R. S. R. Devi, and H. B. Banoth, Experimental Investigations on Performance Evaluation of a Single Basin Solar Still Using Different Energy Absorbing Materials, Aquat. Procedia, vol. 4, no. Icwrcoe, p.1483–1491, (2015).

DOI: 10.1016/j.aqpro.2015.02.192

Google Scholar

[15] A. J. N. Khalifa and H. A. Ibrahim, Effect of inclination of the external re fl ector of simple solar still in winter : An experimental investigation for different cover angles, DES, vol. 264, no. 1–2, p.129–133, (2010).

DOI: 10.1016/j.desal.2010.07.016

Google Scholar

[16] R. Sathyamurthy, S. A. El-agouz, and V. Dharmaraj, Experimental analysis of a portable solar still with evaporation and condensation chambers, DES, vol. 367, p.180–185, (2015).

DOI: 10.1016/j.desal.2015.04.012

Google Scholar

[17] M. Abu-arabi, Y. Zurigat, H. Al-hinaib, and S. Al-hiddabib, Modeling and performance analysis of a solar desalination unit with double-glass cover cooling, vol. 143, no. May 2001, p.173–182, (2002).

DOI: 10.1016/s0011-9164(02)00238-2

Google Scholar

[18] A. Ahsan, K. M. Sha, T. Fukuhara, and A. Halim, Experimental study on evaporation , condensation and production of a new Tubular Solar Still, vol. 260, p.172–179, (2010).

DOI: 10.1016/j.desal.2010.04.044

Google Scholar

[19] A. E. Kabeel, Performance of solar still with a concave wick evaporation surface, Energy, vol. 34, no. 10, p.1504–1509, (2015).

DOI: 10.1016/j.energy.2009.06.050

Google Scholar

[20] D. W. Medugu and L. G. Ndatuwong, Theoretical analysis of water distillation using solar still, vol. 4, no. 11, p.705–712, (2009).

Google Scholar

[21] B. Janarthanan, J. Chandrasekaran, and S. Kumar, Evaporative heat loss and heat transfer for open- and closed-cycle systems of a floating tilted wick solar still, Desalination, vol. 180, no. 1–3, p.291–305, (2005).

DOI: 10.1016/j.desal.2005.01.010

Google Scholar

[22] B. S. Kumar, S. Kumar, and R. Jayaprakash, Performance analysis of a 'V' type solar still using a charcoal absorber and a boosting mirror, Desalination, vol. 229, no. 1–3, p.217–230, (2008).

DOI: 10.1016/j.desal.2007.09.009

Google Scholar

[23] K. V. Kumar and R. K. Bai, Performance study on solar still with enhanced condensation, vol. 230, p.51–61, (2008).

Google Scholar

[24] S. Abdallah, M. M. Abu-Khader, and O. Badran, Effect of various absorbing materials on the thermal performance of solar stills, Desalination, vol. 242, no. 1–3, p.128–137, (2009).

DOI: 10.1016/j.desal.2008.03.036

Google Scholar

[25] K. M. S. Eldalil, Improving the performance of solar still using vibratory harmonic effect, Desalination, vol. 251, no. 1–3, p.3–11, (2010).

DOI: 10.1016/j.desal.2009.10.004

Google Scholar

[26] H. E. S. Fath, Solar distillation: a promising alternative for water provision with free energy, simple technology and a clean environment, Desalination, vol. 116, no. 1, p.45–56, (1998).

DOI: 10.1016/s0011-9164(98)00056-3

Google Scholar

[27] H. N. Panchal, Enhancement of distillate output of double basin solar still with vacuum tubes, J. King Saud Univ. - Eng. Sci., vol. 27, no. 2, p.170–175, (2015).

DOI: 10.1016/j.jksues.2013.06.007

Google Scholar

[28] a. S. Nafey, M. Abdelkader, a. Abdelmotalip, and a. a. Mabrouk, Solar still productivity enhancement, Energy Convers. Manag., vol. 42, no. 11, p.1401–1408, (2001).

DOI: 10.1016/s0196-8904(00)00107-2

Google Scholar

[29] a S. Nafey, M. Abdelkader, a Abdelmotalip, and a a Mabrouk, Enhancement of solar still productivity using floating perforated black plate, Energy Convers. Manag., vol. 43, no. 7, p.937–946, (2002).

DOI: 10.1016/s0196-8904(01)00079-6

Google Scholar

[30] a. a. El-Sebaii, a. a. Al-Ghamdi, F. S. Al-Hazmi, and A. S. Faidah, Thermal performance of a single basin solar still with PCM as a storage medium, Appl. Energy, vol. 86, no. 7–8, p.1187–1195, (2009).

DOI: 10.1016/j.apenergy.2008.10.014

Google Scholar

[31] S. Nijmeh, S. Odeh, and B. Akash, Experimental and theoretical study of a single-basin solar sill in Jordan, Int. Commun. Heat Mass Transf., vol. 32, no. 3–4, p.565–572, (2005).

DOI: 10.1016/j.icheatmasstransfer.2004.06.006

Google Scholar

[32] B. a Akash, M. S. Mohsen, O. Osta, and Y. Elayan, Experimental evaluation of a single-basin solar still using different absorbing materials, Renew. Energy, vol. 14, no. 1–4, p.307–310, (1998).

DOI: 10.1016/s0960-1481(98)00082-2

Google Scholar

[33] B. Janarthanan, J. Chandrasekaran, and S. Kumar, Performance of floating cum tilted-wick type solar still with the effect of water flowing over the glass cover, Desalination, vol. 190, no. 1–3, p.51–62, (2006).

DOI: 10.1016/j.desal.2005.08.005

Google Scholar

[34] P. R. Prasad, P. Pujitha, G. V. Rajeev, and K. Vikky, Energy efficient Solar Water Still, vol. 3, no. 4, p.1781–1787, (2011).

Google Scholar

[35] a. a. F. Al-Hamadani and S. K. Shukla, Water Distillation Using Solar Energy System with Lauric Acid as Storage Medium, Int. J. Energy Eng., vol. 1, no. 1, p.1–8, (2012).

DOI: 10.5923/j.ijee.20110101.01

Google Scholar

[36] V. Velmurugan, J. Mandlin, B. Stalin, and K. Srithar, Augmentation of saline streams in solar stills integrating with a mini solar pond, Desalination, vol. 249, no. 1, p.143–149, (2009).

DOI: 10.1016/j.desal.2009.06.016

Google Scholar

[37] B. S. Shobha, Performance Evaluation of A Solar Still Coupled to an Evacuated Tube Collector type Solar Water Heater, vol. 1, no. 1, p.72–84, (2012).

Google Scholar

[38] V. Velmurugan, S. Pandiarajan, P. Guruparan, L. H. Subramanian, C. D. Prabaharan, and K. Srithar, Integrated performance of stepped and single basin solar stills with mini solar pond, Desalination, vol. 249, no. 3, p.902–909, (2009).

DOI: 10.1016/j.desal.2009.06.070

Google Scholar

[39] E. Investigation, O. F. a Single, S. Solar, and S. Using, Experimental Investigation of a Single Slope Solar Still Using Pcm, Int. J. Res. Environ. Sci. Technol., vol. 1, no. 4, p.30–33, (2011).

Google Scholar

[40] K. Srithar, Performance Analysis of Vapour Adsorption Solar Still Integrated with Mini-solar Pond for Effluent Treatment, Int. J. Chem. Eng. Appl., vol. 1, no. 4, p.336–341, (2010).

DOI: 10.7763/ijcea.2010.v1.58

Google Scholar

[41] M. Sakthivel, S. Shanmugasundaram, and T. Alwarsamy, An experimental study on a regenerative solar still with energy storage medium — Jute cloth, DES, vol. 264, no. 1–2, p.24–31, (2010).

DOI: 10.1016/j.desal.2010.06.074

Google Scholar

[42] K. K. Murugavel, K. K. S. K. Chockalingam, and K. Srithar, An experimental study on single basin double slope simulation solar still with thin layer of water in the basin, vol. 220, p.687–693, (2008).

DOI: 10.1016/j.desal.2007.01.063

Google Scholar

[43] K. Voropoulos, E. Mathioulakis, and V. Belessiotis, Experimental investigation of a solar still coupled with solar collectors, vol. 138, no. May, p.28–31, (2001).

DOI: 10.1016/s0011-9164(01)00251-x

Google Scholar

[44] Z. M. Omara, A. E. Kabeel, and M. M. Younes, Enhancing the stepped solar still performance using internal re fl ectors, DES, vol. 314, p.67–72, (2013).

DOI: 10.1016/j.desal.2013.01.007

Google Scholar

[45] K. Schwarzer, M. Eug, C. Faber, and C. Miiller, Solar thermal desalination system with heat recovery, vol. 137, p.23–29, (2001).

DOI: 10.1016/s0011-9164(01)00200-4

Google Scholar

[46] L. Garcia-rodriguez, A. I. Palmero-marreroa, and C. Gbmez-camachob, Comparison of solar thermal technologies for applications in seawater desalination, vol. 142, p.135–142, (2002).

DOI: 10.1016/s0011-9164(01)00432-5

Google Scholar

[47] H. Al-hinai, M. S. Al-nassri, and B. A. Jubran, Parametric investigation of a double-e ~ eGt solar still in comparison with a single-effect solar still, vol. 150, p.75–83, (2002).

DOI: 10.1016/s0011-9164(02)00931-1

Google Scholar

[48] D. Y. Goswami, Analysis of an innovative water desalination system using low-grade solar heat, vol. 156, no. May, p.323–332, (2003).

DOI: 10.1016/s0011-9164(03)00363-1

Google Scholar

[49] M. N. A. Hawlader, P. K. Dey, S. Diab, and C. Y. Chung, Solar assisted heat pump desalination system, vol. 168, p.49–54, (2004).

DOI: 10.1016/j.desal.2004.06.168

Google Scholar

[50] H. N. Singh and G. N. Tiwari, Monthly performance of passive and active solar stills for different Indian climatic conditions, vol. 168, p.145–150, (2004).

DOI: 10.1016/j.desal.2004.06.180

Google Scholar

[51] Y. F. Nassar, S. A. Yousif, and A. A. Salem, The second generation of the solar desalination systems, vol. 209, p.177–181, (2007).

DOI: 10.1016/j.desal.2007.04.039

Google Scholar

[52] H. Marmouch, J. Orfi, and S. Ben, Effect of a cooling tower on a solar desalination system, DES, vol. 238, no. 1–3, p.281–289, (2009).

DOI: 10.1016/j.desal.2008.02.019

Google Scholar

[53] V. K. Dwivedi and G. N. Tiwari, Comparison of internal heat transfer coefficients in passive solar stills by different thermal models : An experimental validation, DES, vol. 246, no. 1–3, p.304–318, (2009).

DOI: 10.1016/j.desal.2008.06.024

Google Scholar

[54] M. A. Eltawil and Z. Zhengming, Wind turbine-inclined still collector integration with solar still for brackish water desalination, DES, vol. 249, no. 2, p.490–497, (2009).

DOI: 10.1016/j.desal.2008.06.029

Google Scholar

[55] S. C. Maroo and D. Y. Goswami, Theoretical analysis of a single-stage and two-stage solar driven fl ash desalination system based on passive vacuum generation, DES, vol. 249, no. 2, p.635–646, (2009).

DOI: 10.1016/j.desal.2008.12.055

Google Scholar

[56] A. M. El-zahaby, A. E. Kabeel, A. I. Bakry, S. A. El-agouz, and O. M. Hawam, Enhancement of solar still performance using a reciprocating spray feeding system — An experimental approach, DES, vol. 267, no. 2–3, p.209–216, (2011).

DOI: 10.1016/j.desal.2010.09.028

Google Scholar

[57] K. S. Reddy, K. R. Kumar, T. S. O. Donovan, and T. K. Mallick, Performance analysis of an evacuated multi-stage solar water desalination system, DES, vol. 288, p.80–92, (2012).

DOI: 10.1016/j.desal.2011.12.016

Google Scholar

[58] Z. S. Abdel-rehim and A. Lasheen, Improving the performance of solar desalination systems, vol. 30, p.1955–1971, (2005).

DOI: 10.1016/j.renene.2005.01.008

Google Scholar

[59] R. Dev, S. A. Abdul-wahab, and G. N. Tiwari, Performance study of the inverted absorber solar still with water depth and total dissolved solid, Appl. Energy, vol. 88, no. 1, p.252–264, (2011).

DOI: 10.1016/j.apenergy.2010.08.001

Google Scholar

[60] V. Gnaneswar, N. Nirmalakhandan, S. Deng, and A. Maganti, Low temperature desalination using solar collectors augmented by thermal energy storage, Appl. Energy, vol. 91, no. 1, p.466–474, (2012).

DOI: 10.1016/j.apenergy.2011.10.018

Google Scholar

[61] B. B. Sahoo, N. Sahoo, P. Mahanta, L. Borbora, P. Kalita, and U. K. Saha, Performance assessment of a solar still using blackened surface and thermocol insulation, vol. 33, p.1703–1708, (2008).

DOI: 10.1016/j.renene.2007.09.009

Google Scholar

[62] Y. H. Zurigat and M. K. Abu-arabi, Modelling and performance analysis of a regenerative solar desalination unit, vol. 24, p.1061–1072, (2004).

DOI: 10.1016/j.applthermaleng.2003.11.010

Google Scholar

[63] F. Bakhtiari, A. Zolfaghari, H. Moghadam, and F. Farshchi, Theoretical and experimental study of cascade solar stills, Sol. Energy, vol. 90, p.205–211, (2013).

DOI: 10.1016/j.solener.2012.12.019

Google Scholar

[64] A. M. I. Mohamed and N. A. El-minshawy, Theoretical investigation of solar humidification – dehumidification desalination system using parabolic trough concentrators, Energy Convers. Manag., vol. 52, no. 10, p.3112–3119, (2011).

DOI: 10.1016/j.enconman.2011.04.026

Google Scholar

[65] Single basin solar still with ba ' e suspended absorber, vol. 41, p.661–675, (2000).

Google Scholar

[66] S. Kumar, A. Dubey, and G. N. Tiwari, A solar still augmented with an evacuated tube collector in forced mode, DES, vol. 347, p.15–24, (2014).

DOI: 10.1016/j.desal.2014.05.019

Google Scholar

[67] T. Rajaseenivasan, P. N. Raja, and K. Srithar, An experimental investigation on a solar still with an integrated fl at plate collector, DES, vol. 347, p.131–137, (2014).

DOI: 10.1016/j.desal.2014.05.029

Google Scholar

[68] A. Khalil and A. Abdo, Solar water desalination using an air bubble column humidi fi er FM, DES, vol. 372, p.7–16, (2015).

DOI: 10.1016/j.desal.2015.06.010

Google Scholar