A Holistic Energy Pattern in Green Building

Article Preview

Abstract:

BEE project is a category of complicated and systematic engineering in construction industry, not only concerned with alleviation of energy shortage pressure and melioration of residential conditions, but also related to both sustainable development of low carbon society and promotion of circular economy. Three main parts including green building, renewable and clean energy technologies and environmental protection are analyzed and studied in a holistic way. In general, energy-saving technologies and energy management pattern have been researched in detail based on general building energy efficiency theory, so as to effectively promote building energy-efficient application system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

229-235

Citation:

Online since:

February 2018

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. L. X. Li, The Green Ecological Environment in Shanghai Free Trade Area, Nat. Envir. Pollut. Tech. 15(2) (2016) 755-760.

Google Scholar

[2] X. Xi, R. Sioshansi, V. Marano, A stochastic dynamic programming model for co-optimization of distributed energy storage. Energ. Syst. 5(3) (2014) 475-505.

DOI: 10.1007/s12667-013-0100-6

Google Scholar

[3] X. Lu, K. Sun, J. M. Guerrero, J. C. Vasquez & L. Huang, State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications. Ind. Electr. IEEE Trans. 61(6) (2014) 2804-2815.

DOI: 10.1109/tie.2013.2279374

Google Scholar

[4] Y. L. X. Li, The Green Historic District Environment Protection and Utilization, Nat. Envir. Pollut. Tech. 15(3) (2016) 997-1004.

Google Scholar

[5] J. P. Praene, M. David, F. Sinama, D. Morau, & O. Marc, Renewable energy: Progressing towards a net zero energy island, the case of Reunion Island. Renew. Sustain. Energ. Rev. 16(1) (2012) 426-442.

DOI: 10.1016/j.rser.2011.08.007

Google Scholar

[6] P. Raman, S. Mande & V. V. N. Kishore, A passive solar system for thermal comfort conditioning of buildings in composite climates. Solar Energ. 70(4) (2001) 319-329.

DOI: 10.1016/s0038-092x(00)00147-x

Google Scholar

[7] L. Yang, Green building design: Building energy efficiency, Shanghai: Tongji University Press, (2016).

Google Scholar

[8] N. Susheela, & M. K. Sharp, Heat pipe augmented passive solar system for heating of buildings. J. Energ. Eng. 127(1) (2001) 18-36.

DOI: 10.1061/(asce)0733-9402(2001)127:1(18)

Google Scholar

[9] P. Kumar, M. Ketzel, S. Vardoulakis, L. Pirjola, & R. Britter, Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmospheric environment—a review. J. Aeros. Sci. 42(9) (2011) 580-603.

DOI: 10.1016/j.jaerosci.2011.06.001

Google Scholar

[10] L. Yang, Q. Feng. Research on the Green Wind Environment Based on Numerical Simulation, Nat. Envir. Pollut. Tech. 15(2) (2016), 767-772.

Google Scholar

[11] C. K. Chan & X. Yao, Air pollution in mega cities in China. Atmosph. Envir. 42(1) (2008) 1-42.

Google Scholar

[12] D. Tang, T. Y. Li, J. C. Chow, S. U. Kulkarni, J. G. Watson, S. S. H. Ho. & F. Perera, Air pollution effects on fetal and child development: A cohort comparison in China, (2014).

DOI: 10.1016/j.envpol.2013.10.019

Google Scholar

[13] F. Qian, L. Yang, Research on the Sustainability of Urbanization in China, Appl. Mech. Mater. 851 (2016) 664-667.

Google Scholar

[14] I. D. Stewart & T. R. Oke, Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93(12) (2012) 1879-(1900).

DOI: 10.1175/bams-d-11-00019.1

Google Scholar

[15] V. G. Mitchell, R. G. Mein & T. A. McMahon, Modelling the urban water cycle. Environ. Model. Software, 16(7) (2001) 615-629.

DOI: 10.1016/s1364-8152(01)00029-9

Google Scholar

[16] L. Yang, Green building design: Wind environment of building, Shanghai: Tongji University Press, (2014).

Google Scholar

[17] M. Lundin & G. M. Morrison, A life cycle assessment based procedure for development of environmental sustainability indicators for urban water systems. Urb. Water, 4(2) (2002) 145-152.

DOI: 10.1016/s1462-0758(02)00015-8

Google Scholar

[18] P. H. Verburg, W. Soepboer, A. Veldkamp, R. Limpiada, V. Espaldon & S. S. Mastura, Modeling the spatial dynamics of regional land use: the CLUE-S model. Envir. Manag. 30(3) (2002) 391-405.

DOI: 10.1007/s00267-002-2630-x

Google Scholar

[19] C. B. Cooper, J. Dickinson, T. Phillips & R. Bonney, Citizen science as a tool for conservation in residential ecosystems. Ecol. Soc. 12(2) (2007) 11.

DOI: 10.5751/es-02197-120211

Google Scholar

[20] D. Frye, From locus publicus to locus sanctus: Justice and Sacred Space in Merovingian Gaul. Nottingham medieval studies, 47(1) (2003) 1-20.

DOI: 10.1484/j.nms.3.344

Google Scholar

[21] W. Rees & M. Wackernagel, Urban ecological footprints: why cities cannot be sustainable—and why they are a key to sustainability. In Urban Ecology (pp.537-555). Springer US, (2008).

DOI: 10.1007/978-0-387-73412-5_35

Google Scholar

[22] E. L. Glaeser, M. E. Kahn & J. Rappaport, Why do the poor live in cities? The role of public transportation. J. Urb. Econ. 63(1) (2008) 1-24.

DOI: 10.1016/j.jue.2006.12.004

Google Scholar

[23] B. Giles-Corti, M. H. Broomhall, M. Knuiman, C. Collins, K. Douglas, K. Ng. & R. J. Donovan, Increasing walking: how important is distance to, attractiveness, and size of public open space? Am. J. Prevent. Med. 28(2) (2005) 169-176.

DOI: 10.1016/j.amepre.2004.10.018

Google Scholar

[24] P. Aspinall, S. Bell, C. Findlay, J. Wherrett & P. Travlou, Open space and social inclusion: local woodland use in central Scotland. Forestry Commission, (2004).

Google Scholar