Total Phenolic Content and DPPH Free Radical Scavenging Activity of Young Turmeric Grown in Southern Thailand

Article Preview

Abstract:

Turmeric (Curcuma longa L.), a member of Zingiberacaeae, is used for Thai traditional medicine, flavoring, preservative, and coloring agent. In Southern Thailand, turmeric is a famous ingredient for food recipes. Not only is the ripened rhizome used for cuisine, but also the young rhizomes. Previous studies have indicated that a variety of turmeric products from the ripened rhizome are valuable source of antioxidant compounds. However, there are ambiguous data regarding the level of antioxidant activity of the young rhizome. The aim of this study was to investigate the level of total phenolic content (TPC) and antioxidant activity of the young rhizomes by comparing to the ripened rhizome. TPC and antioxidant activity of aqueous and 80% methanolic extracts from the young turmeric grown in Southern Thailand were estimated using the Folin-Ciocalteu method and DPPH free radical scavenging activity (DPPH-RSA) assay, respectively. Results showed that the concentration of TPC determined in methanolic extract (19.80±0.25 mg GAE/ g extract) from the young rhizome was significantly higher than the corresponding aqueous extract (18.38±0.41 mg GAE/ g extract). The aqueous and methanolic extracts exhibited significant inhibition in DPPH-RSA with the half-maximal inhibitory concentration (IC50) value of 5.88±0.70 mg/mL and 3.00±0.31 mg/mL, respectively. However, in comparison with the ripened rhizome, TPC and DPPH-RSA of the young rhizome were lower. These results indicate that the young rhizome grown in Southern Thailand could be a source of antioxidant compounds, but the ripened rhizome provides better antioxidant properties than the young rhizome.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

61-69

Citation:

Online since:

January 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.A. Pham-Huy, H. He, C. Pham-Huy, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci. 4 (2008) 89-96.

DOI: 10.1201/9781003220817-3

Google Scholar

[2] S.B. Nimse, D. Pal, Free radicals, natural antioxidants, and their reaction mechanisms, Rsc. Advances. 5 (2015) 27986-28006.

DOI: 10.1039/c4ra13315c

Google Scholar

[3] V. Lobo, A. Patil, A. Phatak, N. Chandra, Free radicals, antioxidants and functional foods: Impact on human health, Pharmacogn. Rev. 4 (2010) 118-126.

DOI: 10.4103/0973-7847.70902

Google Scholar

[4] B. Sultana, F. Anwar, M. Ashraf, Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts, Molecules 14 (2009).

DOI: 10.3390/molecules14062167

Google Scholar

[5] O.K. Chun, D.O. Kim, N. Smith, D. Schroeder, J.T. Han, C.Y. Lee, Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet, J. Sci. Food. Agric. 85 (2005) 1715-1724.

DOI: 10.1002/jsfa.2176

Google Scholar

[6] E.M. Tanvir, R. Afroz, N. Karim, M.A. Mottalib, M.I. Hossain, M.A. Islam, S.H. Gan, M.I. Khalil, Antioxidant and Antibacterial Activities of Methanolic Extract of Bau Kul (Ziziphus Mauritiana), an Improved Variety of Fruit from Bangladesh, J. Food. Biochem. 39 (2015) 139-147.

DOI: 10.1111/jfbc.12109

Google Scholar

[7] Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica, J. Food. Drug. Anal. 22 (2014) 296-302.

DOI: 10.1016/j.jfda.2013.11.001

Google Scholar

[8] C.B. Ahn, T.S. Shin, H.K. Seo, J.Y. Je, Phenolic composition and antioxidant effect of aqueous extract of Arisaema cum Bile, the Oriental Herb Medicine, in human fibroblast cells, Immunopharmacol. Immunotoxicol. 34 (2012) 661-666.

DOI: 10.3109/08923973.2011.649289

Google Scholar

[9] S.C. Shivhare, A.O. Patidar, K.G. Malviya, K.K. Shivhare-Malviya, Antioxidant and anticancer evaluation of Scindapsus officinalis (Roxb.) Schott fruits, Ayu. 32 (2011) 388-394.

DOI: 10.4103/0974-8520.93921

Google Scholar

[10] N.T. Dat, J.H. Lee, K. Lee, Y.S. Hong, Y.H. Kim, J.J. Lee, Phenolic constituents of Amorpha fruticosa that inhibit NF-kappaB activation and related gene expression, J. Nat. Prod. 71 (2008) 1696-1700.

DOI: 10.1021/np800383q

Google Scholar

[11] K. Aoi, K. Kaburagi, T. Seki, T. Tobata, M. Satake, M. Kuroyanagi, [Studies on the cultivation of turmeric (Curcuma longa L.). I. Varietal differences in rhizome yield and curcuminoid content], Eisei. Shikenjo. Hokoku. (1986) 124-128.

Google Scholar

[12] A. Ghasemzadeh, H.Z. Jaafar, A.S. Juraimi, A. Tayebi-Meigooni, Comparative Evaluation of Different Extraction Techniques and Solvents for the Assay of Phytochemicals and Antioxidant Activity of Hashemi Rice Bran, Molecules 20 (2015) 10822-10838.

DOI: 10.3390/molecules200610822

Google Scholar

[13] H. Hatcher, R. Planalp, J. Cho, F.M. Torti, S.V. Torti, Curcumin: from ancient medicine to current clinical trials, Cell. Mol. Life. Sci. 65 (2008) 1631-1652.

DOI: 10.1007/s00018-008-7452-4

Google Scholar

[14] S. Kong, Y.H. Zhang, C.F. Liu, I. Tsui, Y. Guo, B.B. Ai, F.J. Han, The complementary and alternative medicine for endometriosis: a review of utilization and mechanism, Evid. Based. Complement. Alternat. Med. 2014 (2014) 146383.

DOI: 10.1155/2014/146383

Google Scholar

[15] C.C. Araujo, L.L. Leon, Biological activities of Curcuma longa L, Mem. Inst. Oswaldo. Cruz. 96 (2001) 723-728.

DOI: 10.1590/s0074-02762001000500026

Google Scholar

[16] Y. Wang, Z. Lu, H. Wu, F. Lv, Study on the antibiotic activity of microcapsule curcumin against foodborne pathogens, Int. J. Food. Microbiol. 136 (2009) 71-74.

DOI: 10.1016/j.ijfoodmicro.2009.09.001

Google Scholar

[17] H.P. Ammon, M.A. Wahl, Pharmacology of Curcuma longa, Planta. Med. 57 (1991) 1-7.

DOI: 10.1055/s-2006-960004

Google Scholar

[18] X.Y. Wang, Y. Jiang, Y.W. Wang, M.T. Huang, C.T. Ho, Q.R. Huang, Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions, Food. Chem. 108 (2008) 419-424.

DOI: 10.1016/j.foodchem.2007.10.086

Google Scholar

[19] A. Mitra, J. Chakrabarti, A. Banerji, A. Chatterjee, B.R. Das, Curcumin, a potential inhibitor of MMP-2 in human laryngeal squamous carcinoma cells HEp2, J. Environ. Pathol. Toxicol. Oncol. 25 (2006) 679-690.

DOI: 10.1615/jenvironpatholtoxicoloncol.v25.i4.70

Google Scholar

[20] A. Gosslau, K.Y. Chen, Nutraceuticals, apoptosis, and disease prevention, Nutrition. 20 (2004) 95-102.

DOI: 10.1016/j.nut.2003.09.017

Google Scholar

[21] H. Vogel, J. Pelletier, Curcumin-biological and medicinal properties, J. Pharma. 1815 (2) 50.

Google Scholar

[22] N. Chainani-Wu, Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa), J. Altern. Complement. Med. 9 (2003) 161-168.

DOI: 10.1089/107555303321223035

Google Scholar

[23] K.K. Sinha, SPICES AND FLAVORING (FLAVOURING) CROPS/ Tubers and Roots, in: C. Benjamin, T. Luiz, M. F. Paul (Eds), Encyclopedia of Food Sciences and Nutrition, Academic Press, Florida, U.S.A., 2003, pp.5486-5491.

DOI: 10.1016/b0-12-227055-x/01125-1

Google Scholar

[24] A.M. Spinello, M. Leonel, M.M. Mischan, E.L. do Carmo, Cassava and Turmeric Flour Blends as New Raw Materials to Extruded Snacks, Ciencia. E. Agrotecnologia. 38 (2014) 68-75.

DOI: 10.1590/s1413-70542014000100008

Google Scholar

[25] R. Thaikert, Y.Paisooksantivatana, Variation of total curcuminoids content, antioxidant activity and genetic diversity in turmeric (Curcuma longa L.) collections, Kasetsart, J. (Nat. Sci.) 2009 (43) 507-518.

Google Scholar

[26] E.M. Tanvir, M.S. Hossen, M.F. Hossain, R. Afroz, S.H. Gan, M.I. Khalil, N. Karim, Antioxidant Properties of Popular Turmeric (Curcuma longa) Varieties from Bangladesh, J. Food. Quality. (2017).

DOI: 10.1155/2017/8471785

Google Scholar

[27] W. Panpipat, W. Suttirak, M. Chaijan, Free radical scavenging activity and reducing capacity of five southern Thai indigenous vegetable extracts, Walailak J. Sci. & Tech. 7 (2011) 51-60.

Google Scholar

[28] C. Torres-Urrutia, L. Guzman, G. Schmeda-Hirschmann, R. Moore-Carrasco, M. Alarcon, L. Astudillo, M. Gutierrez, G. Carrasco, J.A. Yuri, E. Aranda, I. Palomo, Antiplatelet, anticoagulant, and fibrinolytic activity in vitro of extracts from selected fruits and vegetables, Blood. Coagul. Fibrinolysis. 22 (2011) 197-205.

DOI: 10.1097/mbc.0b013e328343f7da

Google Scholar

[29] E.A. Ainsworth, K.M. Gillespie, Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent, Nat. Protoc. 2 (2007) 875-877.

DOI: 10.1038/nprot.2007.102

Google Scholar

[30] S. McDonald, P.D. Prenzler, M. Antolovich, K. Robards, Phenolic content and antioxidant activity of olive extracts, Food. Chem. 73 (2001) 73-84.

DOI: 10.1016/s0308-8146(00)00288-0

Google Scholar

[31] D. Sanna, G. Delogu, M. Mulas, M. Schirra, A. Fadda, Determination of Free Radical Scavenging Activity of Plant Extracts Through DPPH Assay: An EPR and UV-Vis Study, Food. Anal. Method. 5 (2012) 759-766.

DOI: 10.1007/s12161-011-9306-1

Google Scholar

[32] C.D. Stalikas, Extraction, separation, and detection methods for phenolic acids and flavonoids, J. Sep. Sci., 30 (2007), pp.3268-3295.

DOI: 10.1002/jssc.200700261

Google Scholar

[33] I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, R.K. Banerjee, Turmeric and curcumin: Biological actions and medicinal applications (vol 87, pg 44, 2004), Current. Science. 87 (2004) 1325-1325.

Google Scholar

[34] H. Zieliński, H. Kozłowska, Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions, J. Agric. Food. Chem. 48 (2000), 2008-2016.

DOI: 10.1021/jf990619o

Google Scholar

[35] T. Nisar, M. Iqbal, A. Raza, M. Safdar, F. Iftikhar, M . Waheed, Estimation of Total Phenolics and Free Radical Scavenging of Turmeric (Curcuma longa), American-Eurasian J. Agric. & Environ. Sci. 2015 (15) 1272-1277.

Google Scholar

[36] R. Harini, S. Sindhu , E. Sagadevan, P. Arumugam, Characterization of in vitro antioxidant potential of Azadirachta indica and Abutilon indicum by different assay methods, J. Pharm. Res. 2012 (5) 3227–3231.

Google Scholar

[37] M. Tanaka, C.W. Kuie, Y. Nagashima, T. Taguchi. Applications of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon. Suisan. Gakk. 1988 (54) 1409-1414.

DOI: 10.2331/suisan.54.1409

Google Scholar

[38] P. Wongsa, J. Chaiwarit, A. Zamaludien, In vitro screening of phenolic compounds, potential inhibition against alpha-amylase and alpha-glucosidase of culinary herbs in Thailand, Food. Chem. 131 (2012) 964-971.

DOI: 10.1016/j.foodchem.2011.09.088

Google Scholar

[39] J. Javanmardi, C. Stushnoff, E. Locke, J.M. Vivanco, Antioxidant activity and total phenolic content of Iranian Ocimum accessions, Food. Chem. 83 (2003) 547-550.

DOI: 10.1016/s0308-8146(03)00151-1

Google Scholar