Sulfur-Doped g-C3N4 with Enhanced Visible-Light Photocatalytic Activity

Article Preview

Abstract:

The S-doped g-C3N4 materials were prepared by heating mixtures of urea and thiourea with various weight ratios at 550 °C, and denoted as x:y SCN, where x:y is weight ratios of urea to thiourea. The obtained samples were characterized by X-ray diffraction, diffuse reflectance ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric differential thermal analysis, scanning electron microscopy and infrared spectra. The results showed that all the x:y SCN materials exhibit the presence of doping S in the structure of g-C3N4 and higher capability in the photodegradation of Rhodamin B in aqueous solution under visible light condition than pure g-C3N4. Among the SCN samples, 75:25 SCN performed the highest photocatalytic activity, which is believed the presence of the largest amount of doping S in the matrix of g-C3N4, leading to reduction of their bandgap. The reduction of bandgap for S-doped g-C3N4 materials compared to pure g-C3N4 was proved by theoretical calculation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-50

Citation:

Online since:

March 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. and Photobio. C: Photochem. Rev., (2010), 11, 179-209.

DOI: 10.1016/j.jphotochemrev.2011.02.003

Google Scholar

[2] J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy Environ. Sci. (2010), 3, 715-726.

DOI: 10.1039/b927575d

Google Scholar

[3] R. M. Mohamed, D. L. McKinney, W. M. Sigmund, Enhanced nanocatalysts, Materials Science and Engineering R 73, 1-13, (2012).

Google Scholar

[4] A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang, B. Zou, Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres, Mater. Lett., 66, 72-75, (2012).

DOI: 10.1016/j.matlet.2011.08.011

Google Scholar

[5] X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen. Y. Hou, X. Fu, M. Antonietti, Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light, J. Am. Chem. Soc, 131, 1680-1681, (2009).

DOI: 10.1021/ja809307s

Google Scholar

[6] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angew. Chem. Int. Ed, 51, 68-89, (2012).

DOI: 10.1002/anie.201101182

Google Scholar

[7] S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine, Langmuir, 25, 10397-10401, (2009).

DOI: 10.1021/la900923z

Google Scholar

[8] F. Su et al., mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light, J. Am. Chem. Soc, 132, 16299-16301, (2010).

DOI: 10.1021/ja102866p

Google Scholar

[9] Y. Wang, J. Zhang, X. Wang, M. Antonietti, and H. Li, Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation, Angew. Chem. Int. Ed., 49, 3356-3359, (2010).

DOI: 10.1002/anie.201000120

Google Scholar

[10] Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, H. Li, Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity, Materials Letters 137, 281-284 (2014).

DOI: 10.1016/j.matlet.2014.08.142

Google Scholar

[11] J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun, 48, 12017-12019, ( 2012).

DOI: 10.1039/c2cc35862j

Google Scholar

[12] L. Zhang, X. Chen, J. G. Y. Jiang, T. H. X. Mu, Facile, Synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity, Materials Research Bulletin 48, 3485-3491 (2013).

DOI: 10.1016/j.materresbull.2013.05.040

Google Scholar

[13] Y. Zhang et al., Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation, J. Am. Chem. Soc. 132, 6294-6295 (2010).

DOI: 10.1021/ja101749y

Google Scholar

[14] J. Hong, X. Xia, Y. Wang and R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light, J. Mater. Chem, 22, 15006-15012 (2012).

DOI: 10.1039/c2jm32053c

Google Scholar

[15] J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu and X. Wang, Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis, Energy Environ. Sci., 4, 675-678 (2011).

DOI: 10.1039/c0ee00418a

Google Scholar

[16] X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc, 131, 1680, (2009).

Google Scholar

[17] K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction Performance, Appl. Catal. B: Environ., 176, 44-52, (2015).

DOI: 10.1016/j.apcatb.2015.03.045

Google Scholar

[18] I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakisc, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4, Applied Surface Science 358, 278-286, (2015).

DOI: 10.1016/j.apsusc.2015.08.097

Google Scholar

[19] Milad Jourshabani, Zahra Shariatinia, and Alireza Badiei, Controllable Synthesis of Mesoporous Sulfur-Doped Carbon Nitride Materials for Enhanced Visible Light Photocatalytic, 2017, Degradation, Langmuir 2017, 33, 7062−7078.

DOI: 10.1021/acs.langmuir.7b01767

Google Scholar

[20] Ran You, Hailong Dou, Lu Chen, Shaohui Zheng and Yongping Zhang, Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance, 2017, RSC Adv.,7,15842–15850.

DOI: 10.1039/c7ra01036b

Google Scholar

[21] Nataliya D. Shcherban et al., Simple method for preparing of sulfur–doped graphitic carbon nitride with superior activity in CO2 photoreduction, 2016, Chemystry Select, 1, 4987 – 4983.

DOI: 10.1002/slct.201601283

Google Scholar

[22] S. Dharmambal, N. Mani, D. Kannan, Adsorption of Rhodamine–B Dye from the aqueous Solution by using Tectonagrandis Bark Powder, 2015, Asian Journal of Research in Chemistry, 8(5), 0974-4169.

DOI: 10.5958/0974-4150.2015.00057.7

Google Scholar