[1]
R. Abe, Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation, J. Photochem. and Photobio. C: Photochem. Rev., (2010), 11, 179-209.
DOI: 10.1016/j.jphotochemrev.2011.02.003
Google Scholar
[2]
J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, S. Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy Environ. Sci. (2010), 3, 715-726.
DOI: 10.1039/b927575d
Google Scholar
[3]
R. M. Mohamed, D. L. McKinney, W. M. Sigmund, Enhanced nanocatalysts, Materials Science and Engineering R 73, 1-13, (2012).
Google Scholar
[4]
A. Lei, B. Qu, W. Zhou, Y. Wang, Q. Zhang, B. Zou, Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres, Mater. Lett., 66, 72-75, (2012).
DOI: 10.1016/j.matlet.2011.08.011
Google Scholar
[5]
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen. Y. Hou, X. Fu, M. Antonietti, Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light, J. Am. Chem. Soc, 131, 1680-1681, (2009).
DOI: 10.1021/ja809307s
Google Scholar
[6]
Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angew. Chem. Int. Ed, 51, 68-89, (2012).
DOI: 10.1002/anie.201101182
Google Scholar
[7]
S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine, Langmuir, 25, 10397-10401, (2009).
DOI: 10.1021/la900923z
Google Scholar
[8]
F. Su et al., mpg-C3N4-Catalyzed Selective Oxidation of Alcohols Using O2 and Visible Light, J. Am. Chem. Soc, 132, 16299-16301, (2010).
DOI: 10.1021/ja102866p
Google Scholar
[9]
Y. Wang, J. Zhang, X. Wang, M. Antonietti, and H. Li, Boron- and Fluorine-Containing Mesoporous Carbon Nitride Polymers: Metal-Free Catalysts for Cyclohexane Oxidation, Angew. Chem. Int. Ed., 49, 3356-3359, (2010).
DOI: 10.1002/anie.201000120
Google Scholar
[10]
Y. Li, S. Wu, L. Huang, J. Wang, H. Xu, H. Li, Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity, Materials Letters 137, 281-284 (2014).
DOI: 10.1016/j.matlet.2014.08.142
Google Scholar
[11]
J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity, Chem. Commun, 48, 12017-12019, ( 2012).
DOI: 10.1039/c2cc35862j
Google Scholar
[12]
L. Zhang, X. Chen, J. G. Y. Jiang, T. H. X. Mu, Facile, Synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity, Materials Research Bulletin 48, 3485-3491 (2013).
DOI: 10.1016/j.materresbull.2013.05.040
Google Scholar
[13]
Y. Zhang et al., Phosphorus-Doped Carbon Nitride Solid: Enhanced Electrical Conductivity and Photocurrent Generation, J. Am. Chem. Soc. 132, 6294-6295 (2010).
DOI: 10.1021/ja101749y
Google Scholar
[14]
J. Hong, X. Xia, Y. Wang and R. Xu, Mesoporous carbon nitride with in situ sulfur doping for enhanced photocatalytic hydrogen evolution from water under visible light, J. Mater. Chem, 22, 15006-15012 (2012).
DOI: 10.1039/c2jm32053c
Google Scholar
[15]
J. Zhang, J. Sun, K. Maeda, K. Domen, P. Liu, M. Antonietti, X. Fu and X. Wang, Sulfur-mediated synthesis of carbon nitride: Band-gap engineering and improved functions for photocatalysis, Energy Environ. Sci., 4, 675-678 (2011).
DOI: 10.1039/c0ee00418a
Google Scholar
[16]
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, M. Antonietti, J. Am. Chem. Soc, 131, 1680, (2009).
Google Scholar
[17]
K. Wang, Q. Li, B. Liu, B. Cheng, W. Ho, J. Yu, Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction Performance, Appl. Catal. B: Environ., 176, 44-52, (2015).
DOI: 10.1016/j.apcatb.2015.03.045
Google Scholar
[18]
I. Papailias, T. Giannakopoulou, N. Todorova, D. Demotikali, T. Vaimakisc, C. Trapalis, Effect of processing temperature on structure and photocatalytic properties of g-C3N4, Applied Surface Science 358, 278-286, (2015).
DOI: 10.1016/j.apsusc.2015.08.097
Google Scholar
[19]
Milad Jourshabani, Zahra Shariatinia, and Alireza Badiei, Controllable Synthesis of Mesoporous Sulfur-Doped Carbon Nitride Materials for Enhanced Visible Light Photocatalytic, 2017, Degradation, Langmuir 2017, 33, 7062−7078.
DOI: 10.1021/acs.langmuir.7b01767
Google Scholar
[20]
Ran You, Hailong Dou, Lu Chen, Shaohui Zheng and Yongping Zhang, Graphitic carbon nitride with S and O codoping for enhanced visible light photocatalytic performance, 2017, RSC Adv.,7,15842–15850.
DOI: 10.1039/c7ra01036b
Google Scholar
[21]
Nataliya D. Shcherban et al., Simple method for preparing of sulfur–doped graphitic carbon nitride with superior activity in CO2 photoreduction, 2016, Chemystry Select, 1, 4987 – 4983.
DOI: 10.1002/slct.201601283
Google Scholar
[22]
S. Dharmambal, N. Mani, D. Kannan, Adsorption of Rhodamine–B Dye from the aqueous Solution by using Tectonagrandis Bark Powder, 2015, Asian Journal of Research in Chemistry, 8(5), 0974-4169.
DOI: 10.5958/0974-4150.2015.00057.7
Google Scholar