I. Film: Using Electrospinning to Create Bioactive Films

Article Preview

Abstract:

With increasing competition between companies, they are increasingly striving to produce higher quality products and to improve their production processes, and the food industry is no different. In order to preserve food for longer, this type of company has dedicated its attention to intelligent packaging, capable of preserving food for longer and of acting as a sensor of the state of food. To develop a film capable of fulfilling the new ambitions of the companies various manufacturing processes have been studied. This document gives an overview of the electrospinning process, capable of producing nanofibres of biological materials. This document aims to serve as a study base for the I.film project through the study of the process that will provide the polymer film with the necessary biological characteristics.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers, J. Electrostat. 35 (1995) 151–160.

DOI: 10.1016/0304-3886(95)00041-8

Google Scholar

[2] D.H. Reneker, H. Fong, eds., Polymeric Nanofibers, American Chemical Society, Washington, DC, (2006).

Google Scholar

[3] Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites, Compos. Sci. Technol. 63 (2003) 2223–2253.

DOI: 10.1016/s0266-3538(03)00178-7

Google Scholar

[4] J. Lee, S.H., Ku, B.C., Wang, X., Samuelson, L.A., Kumar, Design, synthesis and electrospinning of a novel fluorescent polymer for optical sensor applications, Mater. Res. Soc. Symp.– Proc (2002) 403–408.

DOI: 10.1557/proc-708-bb10.45

Google Scholar

[5] W.E. Teo, S. Ramakrishna, A review on electrospinning design and nanofibre assemblies, Nanotechnology 17 (2006) R89–R106.

DOI: 10.1088/0957-4484/17/14/r01

Google Scholar

[6] P.A. Mouthuy, H. Ye, 5.04 - Biomaterials: Electrospinning, Compr. Biotechnol. (2015) 23–36.

Google Scholar

[7] H.-S. Bae, A. Haider, K.M.K. Selim, D.-Y. Kang, E.-J. Kim, I.-K. Kang, Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine, J. Polym. Res. 20 (2013) 158.

DOI: 10.1007/s10965-013-0158-9

Google Scholar

[8] A. Haider, S. Haider, I.-K. Kang, A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology, Arab. J. Chem. (2015).

DOI: 10.1016/j.arabjc.2015.11.015

Google Scholar

[9] M.J. Laudenslager, W.M. Sigmund, Electrospinning, in: Encycl. Nanotechnol., Springer Netherlands, Dordrecht, 2012: p.769–775.

Google Scholar

[10] S. Megelski, J.S. Stephens, D. Bruce Chase, J.F. Rabolt, Micro- and nanostructured surface morphology on electrospun polymer fibers, Macromolecules 35 (2002) 8456–8466.

DOI: 10.1021/ma020444a

Google Scholar

[11] J. Zeleny, The role of surface instability in electrical discharges from drops of alcohol and water in air at atmospheric pressure, J. Franklin Inst. 219 (1935) 659–675.

DOI: 10.1016/s0016-0032(35)91985-8

Google Scholar

[12] S. Zargham, S. Bazgir, A. Tavakoli, A.S. Rashidi, R. Damerchely, The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber, J. Eng. Fiber. Fabr. 42 (2012) 42–49.

DOI: 10.1177/155892501200700414

Google Scholar

[13] K.P. Matabola, Moutloali, The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers-effect of sodium chloride, J. Mater. Sci. 16 (2013) 5475.

DOI: 10.1007/s10853-013-7341-6

Google Scholar

[14] T. Wang, S. Kumar, Electrospinning of polyacrylonitrile nanofibers, J. Appl. Polym. Sci. 102 (2006) 1023–1029.

DOI: 10.1002/app.24123

Google Scholar

[15] S. Haider, Y. Al-Zeghayer, F.A. Ahmed Ali, A. Haider, A. Mahmood, W.A. Al-Masry, M. Imran, M.O. Aijaz, Highly aligned narrow diameter chitosan electrospun nanofibers, J. Polym. Res. 20 (2013) 105.

DOI: 10.1007/s10965-013-0105-9

Google Scholar

[16] N. Zander, N. E., Hierarchically Structured Electrospun Fibers, Polymers (Basel). 5 (2013) 19–44.

Google Scholar

[17] H. Fong, I. Chun, D.H. Reneker, Beaded nanofibers formed during electrospinning, in: Polymer (Guildf)., 1999: p.4585–4592.

DOI: 10.1016/s0032-3861(99)00068-3

Google Scholar

[18] B. Sun, Y.Z. Long, H.D. Zhang, M.M. Li, J.L. Duvail, X.Y. Jiang, H.L. Yin, Advances in three-dimensional nanofibrous macrostructures via electrospinning, Prog. Polym. Sci. 39 (2014) 862–890.

DOI: 10.1016/j.progpolymsci.2013.06.002

Google Scholar

[19] R. Krishnamoorti, I. Banik, L. Xu, Rheology and processing of polymer nanocomposites, Rev. Chem. Eng. 26 (2010) 3–12.

Google Scholar

[20] T.J. Sill, H.A. von Recum, Electrospinning: Applications in drug delivery and tissue engineering, Biomaterials 29 (2008) 1989–(2006).

DOI: 10.1016/j.biomaterials.2008.01.011

Google Scholar

[21] S. Huan, G. Liu, G. Han, W. Cheng, Z. Fu, Q. Wu, Q. Wang, Effect of Experimental Parameters on Morphological, Mechanical and Hydrophobic Properties of Electrospun Polystyrene Fibers, Materials (Basel). 8 (2015) 2718–2734.

DOI: 10.3390/ma8052718

Google Scholar