Fabrication of Poly(Glycerol Sebacate)-Poly(ε-Caprolactone) Extrusion-Based Scaffolds for Cartilage Regeneration

Article Preview

Abstract:

Cartilage related diseases are on the top list concerns of the World Health Organization, being the prevention of articular cartilage degeneration a major health matter for which there are few effective solutions. Using an extrusion-based approach and a polyester elastomer it was aimed to produce 3D structures with controlled architecture and with closer mimicry to cartilage native tissue. The obtained constructs demonstrated high reliability, being the addition of poly (glycerol sebacate) a procedure to enhance the properties of the constructs.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] D.J. Hunter, D. Schofield, E. Callander, The individual and socioeconomic impact of osteoarthritis, Nat. Rev. Rheumatol. 10 (2014) 437–441.

DOI: 10.1038/nrrheum.2014.44

Google Scholar

[2] L.S. Lohmander, Knee replacement for osteoarthritis: facts, hopes, and fears, Medicographia 35 (2013) 181–188.

Google Scholar

[3] C. Juhl, R. Christensen, E.M. Roos, W. Zhang, H. Lund, Impact of Exercise Type and Dose on Pain and Disability in Knee Osteoarthritis: A Systematic Review and Meta‐Regression Analysis of Randomized Controlled Trials, Arthritis Rheumatol. 66 (2014) 622–636.

DOI: 10.1002/art.38290

Google Scholar

[4] T. Woodfield, K. Lim, P. Morouço, R. Levato, J. Malda, F. Melchels, Biofabrication in Tissue Engineering, in: Ref. Modul. Mater. Sci. Mater. Eng., (2017).

DOI: 10.1016/b978-0-12-803581-8.10221-8

Google Scholar

[5] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials 21 (2000) 2529–2543.

DOI: 10.1016/s0142-9612(00)00121-6

Google Scholar

[6] P.G. Morouço, N.M. Alves, S.C. Amado, The Role of Biomechanics in Tissue Engineering, Austin J Biomed Eng 3 (2016) 1035.

Google Scholar

[7] J. Malda, J. Visser, F.P. Melchels, T. Jüngst, W.E. Hennink, W.J.A. Dhert, J. Groll, D.W. Hutmacher, 25th anniversary article: engineering hydrogels for biofabrication, Adv. Mater. 25 (2013) 5011–5028.

DOI: 10.1002/adma.201302042

Google Scholar

[8] D.R. Jeffrey, I. Watt, Imaging hyaline cartilage, Br. J. Radiol. (2014).

Google Scholar

[9] V.H.M. Mouser, R. Levato, L.J. Bonassar, D.D. D'Lima, D.A. Grande, T.J. Klein, D.B.F. Saris, M. Zenobi-Wong, D. Gawlitta, J. Malda, Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration, Cartilage (2016) 1947603516665445.

DOI: 10.1177/1947603516665445

Google Scholar

[10] M.I. Baker, S.P. Walsh, Z. Schwartz, B.D. Boyan, A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J. Biomed. Mater. Res. Part B Appl. Biomater. 100 (2012) 1451–1457.

DOI: 10.1002/jbm.b.32694

Google Scholar

[11] T.D. Sargeant, A.P. Desai, S. Banerjee, A. Agawu, J.B. Stopek, An in situ forming collagen–PEG hydrogel for tissue regeneration, Acta Biomater. 8 (2012) 124–132.

DOI: 10.1016/j.actbio.2011.07.028

Google Scholar

[12] H. Shin, B.D. Olsen, A. Khademhosseini, The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules, Biomaterials 33 (2012) 3143–3152.

DOI: 10.1016/j.biomaterials.2011.12.050

Google Scholar

[13] P. Morouço, S. Biscaia, T. Viana, M. Franco, C. Malça, A. Mateus, C. Moura, F.C. Ferreira, G. Mitchell, N.M. Alves, Fabrication of poly(ϵ-caprolactone) scaffolds reinforced with cellulose nanofibers, with and without the addition of hydroxyapatite nanoparticles, Biomed Res. Int. 2016 (2016).

DOI: 10.1155/2016/1596157

Google Scholar

[14] L. Kock, C.C. van Donkelaar, K. Ito, Tissue engineering of functional articular cartilage: the current status, Cell Tissue Res. 347 (2012) 613–627.

DOI: 10.1007/s00441-011-1243-1

Google Scholar

[15] A.A. Zadpoor, J. Malda, Additive Manufacturing of Biomaterials, Tissues, and Organs, (2017).

Google Scholar

[16] Y. Wang, G.A. Ameer, B.J. Sheppard, R. Langer, A tough biodegradable elastomer., Nat. Biotechnol. 20 (2002) 602–606.

DOI: 10.1038/nbt0602-602

Google Scholar

[17] R.Z. Xiao, Z.W. Zeng, G.L. Zhou, J.J. Wang, F.Z. Li, A.M. Wang, Recent advances in PEG-PLA block copolymer nanoparticles, Int. J. Nanomedicine 5 (2010) 1057–1065.

DOI: 10.2147/ijn.s14912

Google Scholar

[18] A.K. Gaharwar, M. Nikkhah, S. Sant, A. Khademhosseini, Anisotropic poly (glycerol sebacate)-poly ( ϵ -caprolactone) electrospun fibers promote endothelial cell guidance, Biofabrication 7 (2014) 15001.

DOI: 10.1088/1758-5090/7/1/015001

Google Scholar

[19] X. Zhao, Y. Wu, Y. Du, X. Chen, B. Lei, Y. Xue, P.X. Ma, A highly bioactive and biodegradable poly(glycerol sebacate)–silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration, J. Mater. Chem. B 3 (2015) 3222–3233.

DOI: 10.1039/c4tb01693a

Google Scholar

[20] S. Sant, D. Iyer, A.K. Gaharwar, A. Patel, A. Khademhosseini, Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds, Acta Biomater. 9 (2013) 5963–5973.

DOI: 10.1016/j.actbio.2012.11.014

Google Scholar

[21] J. Coates, Interpretation of Infrared Spectra, A Practical Approach, Encycl. Anal. Chem. (2006) 1–23.

Google Scholar