Comparison of Conventional and Ultrasound-Assisted Extraction Techniques for Extraction of Phenolic Compounds from Coconut Husk

Article Preview

Abstract:

In this study, ultrasound-assisted extraction (UAE) was compared with conventional extraction methods, including conventional solvent extraction without agitation (CSE), conventional solvent extraction with agitation at 50 rpm (CSE50) and 150 rpm (CSE150), for the extraction of phenolic compounds from coconut (Cocos nucifera L.) husk. The extraction yield, total phenolic content (TPC) and total flavonoid content (TFC) were examined. The antioxidant capacity of C. nucifera extracts was determined by using 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 2,2’-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays. Experimental results showed that UAE gave the highest extraction yield, TPC, TFC and antioxidant capacities (ABTS and DPPH), followed by CSE150, CSE50 and CSE, respectively. UAE was found to be more effective than conventional extraction methods. Conventional solvent extraction with higher agitation speed exhibited higher extraction efficiency than those with lower agitation speed and without agitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-89

Citation:

Online since:

May 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Mahayothee, I. Koomyart, P. Khuwijitjaru, Phenolic compounds, antioxidant activity, and medium chain fatty acids profiles of coconut water and meat at different maturity stages, Int. J. Food Prop. 19 (2016) 2041-2051.

DOI: 10.1080/10942912.2015.1099042

Google Scholar

[2] O. Okon, U. Eduok, A.A Israel, Characterization and phytochemical screening of coconut (Cocos nucifer L.) coir dust as a low cost adsorbent for waste water treatment, Elixir Appl. Chem. 47 (2012) 8961-8968.

Google Scholar

[3] E.B.C. Lima, C.N.S. Sousa, L.N. Meneses, N.C. Ximenes, M.A. Santos Júnior, G.S. Vasconcelos, N.B.C. Lima, M.C.A. Patrocínio, D. Macedo, S.M.M. Vasconcelos, Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review, Braz. J. Med. Biol. Res. 48 (2015) 953-964.

DOI: 10.1590/1414-431x20154773

Google Scholar

[4] S. Naskar, U.P. Mazumder, G. Pramanik, A. Bala, P.K. Haldar, A. Islam, M. Gupta, Comparative in vitro antioxidant activity of different parts of cocos nuciferra (Linn.) reactive oxygen and nitrogen species, Int. J. Pharm. Pharmaceut. Sci. 3 (2011) 104-107.

Google Scholar

[5] A.U. Israel, R.E. Ogali, O. Akaranta, I.B. Obot, Extraction and characterization of coconut (Cocos nucifera L.) coir dust, Songklanakarin J. Sci. Technol. 33 (2011) 717-724.

Google Scholar

[6] N. Buamard, S. Benjakul, Improvement of gel properties of sardine (Sardinella albella) surimi using coconut husk extracts, Food Hydrocoll. 51 (2015) 146-155.

DOI: 10.1016/j.foodhyd.2015.05.011

Google Scholar

[7] D. Esquenazi, M.D. Wigg, M.M.F.S. Miranda, H.M. Rodigues, J.B.F. Tostes, S. Rozental, A.J.R. da Silva, C.S. Alviano, Antimicrobial and antiviral activities of polyphenolics from Cocos nucifera Linn. (Palme) husk fiber extract. Res. Microbiol. 153 (2002) 647-652.

DOI: 10.1016/s0923-2508(02)01377-3

Google Scholar

[8] C. Kirszberg, D. Esquenazi, C.S. Alviano, V.M. Rumjanek, The effect of a catechin-rich extract of Cocos nucifera on lymphocytes proliferation, Phyther. Res. 17 (2003) 1054-1058.

DOI: 10.1002/ptr.1297

Google Scholar

[9] R.R. Mendonça-Filho, I.A. Rodrigues, D.S. Alviano, A.L.S. Santos, R.M.A. Soares, C.S. Alviano, A.H.S. Lopez, M. do Socorro, S. Rosa, Leishmanicidal activity of polyphenolic-rich extract from husk fiber of Cocos nucifera Linn. (Palmae), Res. Microbiol. 155 (2004) 136-143.

DOI: 10.1016/j.resmic.2003.12.001

Google Scholar

[10] D.S. Alviano, K.F. Rodrigues, S.G. Leitão, M.L. Rodrigues, M.E. Matheus, P.D. Fernandes, Â.R. Antoniolli, C.S. Alviano, Antinociceptive and free radical scavenging activities of Cocos nucifera L. (Palmae) husk fiber aqueous extract, J. Ethnopharmacol. 92 (2004) 269-273.

DOI: 10.1016/j.jep.2004.03.013

Google Scholar

[11] M.B.D.S. Oliveira, I.B. Valentim, C.C.D. Vasconcelos, C.M.B. Omena, E.J.H. Bechara, J.G.D. Costa, M.D.L. Freitas, A.E.G.S. Ana and M.O.F. Goulart, Cocos nucifera Linn. (Palmae) husk fiber ethanolic extract: antioxidant capacity and electrochemical investigation, Comb. Chem. High Throughput Screen. 16 (2013) 121-129.

DOI: 10.2174/1386207311316020006

Google Scholar

[12] P. Tatke, M. Rajan, Comparison of conventional and novel extraction techniques for the extraction of scopoletin from Convolvulus pluricaulis, Pharm. Res. 48 (2014) 27-31.

DOI: 10.5530/ijper.48.1.5

Google Scholar

[13] S. Rodigues, G.A.S. Pinto, Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera) shell powder, J. Food Eng. 80 (2007) 869-872.

DOI: 10.1016/j.jfoodeng.2006.08.009

Google Scholar

[14] L. Wang, C. L. Weller, Recent advances in extraction of nutraceuticals from plants, Trends Food Sci. Technol. 17 (2006) 300-312.

DOI: 10.1016/j.tifs.2005.12.004

Google Scholar

[15] J.L. Luque-Garcıa, M.D. Luque de Castro, Ultrasound: a powerful tool for leaching, Trends Anal. Chem. 22 (2003) 41-47.

DOI: 10.1016/s0165-9936(03)00102-x

Google Scholar

[16] M.N. Safdar, T. Kausar, S. Jabbar, A. Mumtaz, K. Ahad, A.A. Saddozai, Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques, J Food Drug Anal. 25 (2017) 488-500.

DOI: 10.1016/j.jfda.2016.07.010

Google Scholar

[17] M.N. Safdar, T. Kausar, M. Nadeem, Comparison of ultrasound and maceration techniques for the extraction of polyphenols from the mango peel, J. Food Process. Preserv. 41 (2017) 1-13.

DOI: 10.1111/jfpp.13028

Google Scholar

[18] R. Samavardhana, P. Supawititpattana, N. Jittrepotch, K. Rojsuntornkitti, T. Kongbangkerd, Effects of extracting conditions on phenolic compounds and antioxidant activity from different grape processing byproducts, Int. Food Res. J. 22 (2015) 1169-1179.

Google Scholar

[19] F. Chemat, N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, M. Abert-Vian, Ultrasound assisted extraction of food and natural products: Mechanisms, techniques, combinations, protocols and applications, Ultrason. Sonochem. 34 (2017) 540-560.

DOI: 10.1016/j.ultsonch.2016.06.035

Google Scholar

[20] M.B. Hossain, N. Brunton, A. Patras, B. Tiwari, C.P. O'Donnell, A.B. Martin-Diana, C. Barry-Ryan, Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology, Ultrason. Sonochem. 19 (2012) 582-590.

DOI: 10.1016/j.ultsonch.2011.11.001

Google Scholar

[21] P.M. Ekanatake, G.T. Park, Y.D. Lee, S.J. Kim, S.C. Jeong, J. Lee, Antioxidant potential of ell (Anguilla Japonica and Conger Myrister) flesh and skin, J. Food Lipids. 12 (2005) 34-47.

DOI: 10.1111/j.1745-4522.2005.00004.x

Google Scholar

[22] Y. Zou, S.K.C. Chang, A.Y. Gu, S.Y. Qian, Antioxidant activity and phenolic compositions of lentil (Lens culinaris var. Morton) extract and its fractions, J Agric Food Chem. 59 (2011) 2268-2276.

DOI: 10.1021/jf104640k

Google Scholar

[23] A.A.L. Ordoñez, J.D. Gomez, M.A. Vattuone, M.I. Isla, Antioxidant activities of Sechium edule (Jacq.) Swartz extracts, Food Chem. 97 (2006) 452-458.

DOI: 10.1016/j.foodchem.2005.05.024

Google Scholar

[24] Y.Z. Cai, M. Sun, J. Xing, Q. Luo, H. Corke, Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants, Life Sci. 78 (2006) 2872–2888.

DOI: 10.1016/j.lfs.2005.11.004

Google Scholar

[25] Y.Y. Thoo, S.K. Ho, J.Y. Liang, C.W. Ho, C.P. Tan, Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from mengkudu (Morinda citrifolia), Food Chem. 120 (2010) 290-295.

DOI: 10.1016/j.foodchem.2009.09.064

Google Scholar

[26] B.Y. Wong, C.P. Tan, C.W. Ho, Effect of solid-to-solvent ratio on phenolic content and antioxidant capacities of Dukung Anak, (Phyllanthus niruri), Int. Food Res. J. 20 (2013) 325-330.

Google Scholar

[27] S. Subramaniam, A. Palanisamy, A. Sivasubramanian, Development and extraction optimization of baicalein and pinostrobin from Scutellaria violacea through response surface methodology, Phcog. Mag. 11 (2015) 127-138.

DOI: 10.4103/0973-1296.157714

Google Scholar

[28] M. Mohamad, M.W. Ali, A. Ahmad, Modeling for extraction of major phytochemical components from Eurycoma longifolia, J. Appl. Sci. 10 (2010) 2572-2577.

DOI: 10.3923/jas.2010.2572.2577

Google Scholar