[1]
Agrawal R, Imielinski T, Swami A (1993) Mining association rules between sets of items in largedatabases. In: Proceedings of the 1993ACM-SIGMOD international conference on managementDFGHJL'of data (SIGMOD'93), Washington, DC, p.207–216.
DOI: 10.1145/170035.170072
Google Scholar
[2]
Pasquier N, Bastide Y, Taouil R, Lakhal L (1999) Discovering frequent closed itemsets for association rules. In: Proceeding of the 7th international conference on database theory (ICDT'99), Jerusalem, Israel, p.398–416.
DOI: 10.1007/3-540-49257-7_25
Google Scholar
[3]
Han, J., Pei, J., and Yin, Y., (2000). Mining frequent patterns without candidate generation. Proceedings of the 2000 ACM SIGMOD international conference on Management of data, p.1–12.
DOI: 10.1145/342009.335372
Google Scholar
[4]
Wang J, Han J, Pei J (2003) CLOSET+: searching for the best strategies for mining frequent closed itemsets. In: Proceeding of the 2003 ACM SIGKDD international conference on knowledge discovery and data mining (KDD'03), Washington, DC, p.236–245.
DOI: 10.1145/956750.956779
Google Scholar
[5]
Grahne G, Zhu J (2003)Efficiently using prefix-trees in mining frequent itemsets. In: Proceeding of the ICDM'03 international workshop on frequent itemset mining implementations (FIMI'03), Melbourne, FL, p.123–132.
DOI: 10.1109/icdm.2004.10116
Google Scholar
[6]
Liu, G., Lu, H., Yu, J. X., Wang, W., and Xiao, X., (2003). AFOPT: An efficient implementation of pattern growth approach. Proceedings of the ICDM workshop.
Google Scholar
[7]
Christian Borgelt, Xiaoyuan Yang, Ruben Nogales-Cadenas, Pedro Carmona-Saez, and Alberto Pascual-Montano. Proc. 14th Int. Conf. on Extending Database Technology (EDBT 2011, Uppsala,Sweden),367-376. ACM Press, New York, NY, USA (2011).
DOI: 10.1145/1951365.1951410
Google Scholar
[8]
Zhu F, Yan X, Han J, et al. Mining colossal frequent patterns by core pattern fusion. In: Proceedings of the IEEE 23rd International Conference on Data Engineering. Istanbul, Turkey: ACM Press, 2007; 706–15.
DOI: 10.1109/icde.2007.367916
Google Scholar
[9]
Madhavi Dabbiru, Moghalla Shashi, An efficient approach to colossal pattern mining, Int. J. Comput. Sci. Network Secur. (IJCSNS) 6 (2010) 304–312.
Google Scholar
[10]
K. Prasanna, M. Seetha, Efficient and Accurate Discovery of Colossal Pattern Sequences from Biological Datasets: A Doubleton Pattern Mining Strategy (DPMine), In Procedia Computer Science, Volume 54, 2015, Pages 412-421, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2015.06.048.
DOI: 10.1016/j.procs.2015.06.048
Google Scholar
[11]
Mohammad Karim Sohrabi, Ahmad Abdollahzadeh Barforoush, Efficient colossal pattern mining in high dimensional datasets, In Knowledge-Based Systems, Volume 33, 2012, Pages 41-52, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2012.03.003.
DOI: 10.1016/j.knosys.2012.03.003
Google Scholar
[12]
Zulkurnain, N. F., and Keane, J. A., (2012). DisClose: Discovering Colossal Closed Itemsets via a Memory Efficient Compact Row-Tree. Proceedings of the 2nd Doctoral Symposium on Data Mining (DSDM'12), in Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2012), p.41–52.
DOI: 10.1007/978-3-642-36778-6_12
Google Scholar
[13]
Thanh-Long Nguyen, Bay Vo, Vaclav Snasel, Efficient algorithms for mining colossal patterns in high dimensional databases, In Knowledge-Based Systems, Volume 122, 2017, Pages 75-89, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2017.01.034.
DOI: 10.1016/j.knosys.2017.01.034
Google Scholar
[14]
C. Lucchese, S. Orlando and R. Perego, Fast and memory efficient mining of frequent closed itemsets,, in IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 1, pp.21-36, Jan. (2006).
DOI: 10.1109/tkde.2006.10
Google Scholar
[15]
Fournier-Viger, P., Lin, C.W., Gomariz, A., Gueniche, T., Soltani, A., Deng, Z., Lam, H. T. (2016). The SPMF Open-Source Data Mining Library Version 2. Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part III, Springer LNCS 9853, pp.36-40.
DOI: 10.1007/978-3-319-46131-1_8
Google Scholar
[16]
Hanchuan Peng, Fuhui Long, and Chris Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp.1226-1238, (2005).
DOI: 10.1109/tpami.2005.159
Google Scholar
[17]
Zaki MJ, Hsiao CJ (2002) CHARM: an efficient algorithm for closed itemset mining. In: Proceeding of the 2002SIAMinternational conference on data mining (SDM'02),Arlington,VA, p.457–473.
DOI: 10.1137/1.9781611972726.27
Google Scholar