[1]
Abidin, Najwa Wahida Zainal, Mohd Fadzil Faisae Ab Rashid, and Nik Mohd Zuki Nik Mohamed. A review of multi-holes drilling path optimization using soft computing approaches., Archives of Computational Methods in Engineering (2017):1-12.
DOI: 10.1007/s11831-017-9228-1
Google Scholar
[2]
Aized, Tauseef, and Muhammad Amjad. Quality improvement of deep-hole drilling process of AISI D2., The International Journal of Advanced Manufacturing Technology 69.9-12 (2013): 2493-2503.
DOI: 10.1007/s00170-013-5178-4
Google Scholar
[3]
Asiltürk, Ilhan, and Mehmet Çunkaş. Modeling and prediction of surface roughness in turning operations using artificial neural network and multiple regression method., Expert systems with applications 38.5 (2011): 5826-5832.
DOI: 10.1016/j.eswa.2010.11.041
Google Scholar
[4]
Biermann, D., et al. Thermal aspects in deep hole drilling of aluminium cast alloy using twist drills and MQL., Procedia CIRP 3 (2012): 245-250.
DOI: 10.1016/j.procir.2012.07.043
Google Scholar
[5]
Buragohain, Mrinal, and Chitralekha Mahanta. A novel approach for ANFIS modelling based on full factorial design., Applied soft computing 8.1 (2008): 609-625.
DOI: 10.1016/j.asoc.2007.03.010
Google Scholar
[6]
Civicioglu, Pinar, and Erkan Besdok. A conceptual comparison of the Cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms., Artificial intelligence review 39.4 (2013): 315-346.
DOI: 10.1007/s10462-011-9276-0
Google Scholar
[7]
Deng, Chyn-Shu, and Jih-Hua Chin. Hole roundness in deep-hole drilling as analysed by Taguchi methods., The International Journal of Advanced Manufacturing Technology 25.5-6 (2005): 420-426.
DOI: 10.1007/s00170-003-1825-5
Google Scholar
[8]
Deris, Ashanira Mat, Azlan Mohd Zain, and Roselina Sallehuddin. Hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining., Meccanica 48.8 (2013): 1937-1945.
DOI: 10.1007/s11012-013-9710-2
Google Scholar
[9]
Deris, Ashanira Mat, Azlan Mohd Zain, and Roselina Sallehuddin. Overview of support vector machine in modeling machining performances., Procedia Engineering 24 (2011): 308-312.
DOI: 10.1016/j.proeng.2011.11.2647
Google Scholar
[10]
Hayajneh, Mohammed T. Hole quality in deep hole drilling., Materials and Manufacturing Processes 16.2 (2001): 147-164.
DOI: 10.1081/amp-100104297
Google Scholar
[11]
Heinemann, R., et al. Effect of MQL on the tool life of small twist drills in deep-hole drilling., International Journal of Machine Tools and Manufacture 46.1 (2006): 1-6.
DOI: 10.1016/j.ijmachtools.2005.04.003
Google Scholar
[12]
Kamaruzaman, Anis Farhan, et al. Levy flight algorithm for optimization problems-a literature review., Applied Mechanics and Materials. Vol. 421. Trans Tech Publications, (2013).
Google Scholar
[13]
Kathamore, P. S., and S. A. Mule. Experimental Investigation & Performance Improvement of Aluminium Alloy 1200 in Surface Milling Machine., (2016).
Google Scholar
[14]
Khademi, Alireza, et al. The best location for speed bump installation using experimental design methodology., PROMET-Traffic&Transportation 25.6 (2013): 565-574.
DOI: 10.7307/ptt.v25i6.1188
Google Scholar
[15]
Khan, Sarmad Ali, et al. Deep hole drilling of AISI 1045 via high-speed steel twist drills: evaluation of tool wear and hole quality., The International Journal of Advanced Manufacturing Technology 93.1-4 (2017): 1115-1125.
DOI: 10.1007/s00170-017-0587-4
Google Scholar
[16]
Luis, C. J., I. Puertas, and G. Villa. Material removal rate and electrode wear study on the EDM of silicon carbide., Journal of materials processing technology 164 (2005): 889-896.
DOI: 10.1016/j.jmatprotec.2005.02.045
Google Scholar
[17]
Melzi, Nesrine, et al. The prediction of the surface quality based on the stability lobes and the optimization of the cutting parameters in the vibration restraining., Mediterranean Journal of Modeling and Simulation 6.1 (2016): 45-58.
Google Scholar
[18]
Messaoud, Amor, and Claus Weihs. Monitoring a deep hole drilling process by nonlinear time series modeling., Journal of Sound and Vibration 321.3-5 (2009): 620-630.
DOI: 10.1016/j.jsv.2008.10.028
Google Scholar
[19]
Mohamad, Azizah Binti, Azlan Mohd Zain, and Nor Erne Nazira Bazin. Cuckoo search algorithm for optimization problems—a literature review and its applications., Applied Artificial Intelligence 28.5 (2014): 419-448.
DOI: 10.1080/08839514.2014.904599
Google Scholar
[20]
Montgomery, Douglas C. Design and analysis of experiments. John wiley & sons, (2017).
Google Scholar
[21]
Muthuraj, Rajendran, et al. Influence of processing parameters on the impact strength of biocomposites: A statistical approach., Composites Part A: Applied Science and Manufacturing 83 (2016): 120-129.
DOI: 10.1016/j.compositesa.2015.09.003
Google Scholar
[22]
Pavani, P. N. L., R. Pola Rao, and K. Santa Rao. Performance Assessment and Mathematical Modeling of Process Parameters in Electrical Discharge Machining of EN-31 Tool Steel Material Using Taguchi DOE., Engineering Journal 21.2 (2017): 227-236.
DOI: 10.4186/ej.2017.21.2.227
Google Scholar
[23]
Pavlyukevich, Ilya. Lévy flights, non-local search and simulated annealing., Journal of Computational Physics 226.2 (2007): 1830-1844.
DOI: 10.1016/j.jcp.2007.06.008
Google Scholar
[24]
Ravikumar, K., B. Deebika, and K. Balu. Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis., Journal of hazardous materials 122.1-2 (2005): 75-83.
DOI: 10.1016/j.jhazmat.2005.03.008
Google Scholar
[25]
Ribeiro, J. E., and Luís Frölén Ribeiro. Reduction of surface roughness by Taguchi design: an approach for milling parameters." XIX International scientific and technical conference, Progressive Technics, Technology and Engineering Education. Vol. 2. (2018).
Google Scholar
[26]
Sahoo, Priyabrata, Ashwani Pratap, and Asish Bandyopadhyay. Modeling and optimization of surface roughness and tool vibration in CNC turning of Aluminum alloy using hybrid RSM-WPCA methodology., International Journal of Industrial Engineering Computations 8.3 (2017): 385-398.
DOI: 10.5267/j.ijiec.2016.11.003
Google Scholar
[27]
Sarkheyli, Arezoo, Azlan Mohd Zain, and Safian Sharif. A multi-performance prediction model based on ANFIS and new modified-GA for machining processes., Journal of Intelligent Manufacturing 26.4 (2015): 703-716.
DOI: 10.1007/s10845-013-0828-9
Google Scholar
[28]
Shayfull, Z., et al. Milled groove square shape conformal cooling channels in injection molding process., Materials and Manufacturing Processes 28.8 (2013): 884-891.
DOI: 10.1080/10426914.2013.763968
Google Scholar
[29]
Suresh, P. V. S., P. Venkateswara Rao, and S. G. Deshmukh. A genetic algorithmic approach for optimization of surface roughness prediction model., International Journal of Machine Tools and Manufacture 42.6 (2002): 675-680.
DOI: 10.1016/s0890-6955(02)00005-6
Google Scholar
[30]
Yang, Xin-She, and Suash Deb. Cuckoo search via Lévy flights., Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, (2009).
DOI: 10.1109/nabic.2009.5393690
Google Scholar
[31]
Yang, Xin-She, and Suash Deb. Engineering optimisation by cuckoo search., International Journal of Mathematical Modelling and Numerical Optimisation 1.4 (2010): 330-343.
DOI: 10.1504/ijmmno.2010.035430
Google Scholar
[32]
Zain, Azlan Mohd, Habibollah Haron, and Safian Sharif. Integrated ANN–GA for estimating the minimum value for machining performance., International Journal of Production Research 50.1 (2012): 191-213.
DOI: 10.1080/00207543.2011.571454
Google Scholar
[33]
Zain, Azlan Mohd, Habibollah Haron, and Safian Sharif. Integration of simulated annealing and genetic algorithm to estimate optimal solutions for minimising surface roughness in end milling Ti-6AL-4V., International Journal of Computer Integrated Manufacturing 24.6 (2011): 574-592.
DOI: 10.1080/0951192x.2011.566629
Google Scholar