[1]
Soyama, J., Oehring, M., Limberg, W., Pyczak, F.: The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti–45Al–5Nb–0.2B–0.2C, Materials and Design 84:87-94,November (2015).
DOI: 10.1016/j.matdes.2015.06.095
Google Scholar
[2]
Hsua, H.C., Wu, S.C., Sung, Y.C, Ho, W.F.: The structure and mechanical properties of as-cast Zr–Ti alloys, Journal of Alloys and Compounds 488 (2009) 279–283.
DOI: 10.1016/j.jallcom.2009.08.105
Google Scholar
[3]
Benic, L.S., Strkalj, A., Glavas, Z.: Synthesis of Ti-Zr alloy by powder metallurgy, Engineering Review 39(1):115-123 ,January (2019).
Google Scholar
[4]
Henriques, V. A. R. et al.: Sintering of a Gamma Ti-Al Alloy, Materials Science Forum, Vols. 530-531, pp.10-15, (2006).
DOI: 10.4028/www.scientific.net/msf.530-531.10
Google Scholar
[5]
Wójtowicz, B., Pyda, W.: Two-step sintering and related properties of 10 vol.% ZrO2-Al2O3 composites derived from filter and cold isostatic pressing, Materialy Ceramiczne /Ceramic Materials/, 63, 4, (2011), 814-819.
Google Scholar
[6]
Maca, K., Pouchly, V. and Shen, Z.: Two-Step Sintering And Spark Plasma Sintering Of Al2O3, ZrO2 and SrTiO3CERAMICS, Integrated Ferroelectrics, An International Journal, Volume 99, 2008 – Issue 1, Pages 114-124.
DOI: 10.1080/10584580802107841
Google Scholar
[7]
Qian, M., Schaffer, G.B., Bettles, C.J.: Sintering of titanium and its alloys Woodhead Publishing Series in Metals and Surface Engineering, 2010, Pages 324-355.
DOI: 10.1533/9781845699949.3.324
Google Scholar
[8]
Soyama, J., Oehring, M., Limberg, W., Pyczak, F.: The effect of zirconium addition on sintering behaviour, microstructure and creep resistance of the powder metallurgy processed alloy Ti–45Al–5Nb–0.2B–0.2C, Materials and Design 84:87-94,November (2015).
DOI: 10.1016/j.matdes.2015.06.095
Google Scholar
[9]
Benic, L.S., Strkalj, A., Glavas, Z.: Synthesis of Ti-Zr alloy by powder metallurgy, Engineering Review 39(1):115-123 ,January (2019).
Google Scholar
[10]
Henriques, V. A. R. et al.: Sintering of a Gamma Ti-Al Alloy, Materials Science Forum, Vols. 530-531, pp.10-15, (2006).
DOI: 10.4028/www.scientific.net/msf.530-531.10
Google Scholar
[11]
German, R.M.: Sintering: from Empirical Observations to Scientific Principles, 2014, Pages 471-512.
Google Scholar
[12]
German, R.M.: Powder Metallurgy of Iron and Steel. New York: Wiley; (1998).
Google Scholar
[13]
Bolzoni, L., Esteban, P.G., Ruiz-Navas, E.M., Gordo, E.: Influence of Powder Characteristics on Sintering Behaviour and Properties of P/M Ti Alloys Produced from Pre-alloyed Powder and Master Alloy. Powder Metall. 2011;54:543-50.
DOI: 10.1179/003258910x12827272082623
Google Scholar
[14]
Chirico, C., Tsipas, A.S., Toptan, F., Gordo, E.: Development of Ti–Nb and Ti–Nb–Fe beta alloys from TiH2 powders, Powder Metallurgy,.
DOI: 10.1080/00325899.2018.1563953
Google Scholar
[15]
Revankar, G.D., Shetty, R., Shrikantha, S. R., Vinayak, N. G.: Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process, Journal of Materials Research and Technology 6(1), 2016, Pages 13-32.
DOI: 10.1016/j.jmrt.2016.03.007
Google Scholar
[16]
Budinski, K.G.: Tribological properties of titanium alloys. Wear 1991;151:203–17.
DOI: 10.1016/0043-1648(91)90249-t
Google Scholar
[17]
Sharma, M.D., Sehgal, R.: Dry Slinding Friction and Wear Behaviour of Titanium Alloy, Tribology Online,7, 2 (2012), 87-95.
DOI: 10.2474/trol.7.87
Google Scholar
[18]
Qu, J., Blau P.J., Watkins T.R., Cavin, O.B., Kulkarni N.S.: Friction and Wear of Titanium Alloys Sliding against Metal, Polymer, Ceramic Counterfaces, Wear, 258, 2005, 357-362.
DOI: 10.1016/j.wear.2004.09.062
Google Scholar
[19]
Krol, S., Zalisz, Z. and Hepner, M.: Comparison of the Friction and Wear Properties of Titanium and Oxidised titanium in Dry Sliding against Sintered Hight Speed Steel HS18-0-1 and against C45 Carbon Steel, Journal of Materials Processing Technology, 164-165, 2005, 868-875.
DOI: 10.1016/j.jmatprotec.2005.02.113
Google Scholar
[20]
Meiera , L., Schaala, N., Wegenera, K.: In-process measurement of the coefficient of friction on titanium, Elsevier, Procedia CIRP 58 ( 2017 ) 163 – 168.
Google Scholar
[21]
Tian , H., Saka, N., Suh, N.P.: Boundary Lubrication Studies on Undulated Titanium Surfaces, 1989, Tribology Transactions, 32:3:289-296.
DOI: 10.1080/10402008908981891
Google Scholar