[1]
ACI 544-2R. Measurement of properties of fiber reinforced concrete. American Concrete Institute ACI, USA. (1999).
Google Scholar
[2]
M. Nili, V. Afroughsabet, The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete, Constr. Build. Mater. 24 (2010) 927-933.
DOI: 10.1016/j.conbuildmat.2009.11.025
Google Scholar
[3]
M. Nili, V. Afroughsabet, Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete, Int. J. Impact Eng. 37 (2010) 879-886.
DOI: 10.1016/j.ijimpeng.2010.03.004
Google Scholar
[4]
S. T. Yildirim, C. E. Ekinci, F. Findik, Properties of hybrid fiber reinforced concrete under repeated impact loads, Russian J. Nondestr. Test. 46 (2010) 82-92.
DOI: 10.1134/s1061830910070090
Google Scholar
[5]
A. A. Nia, M. Hedayatian, M. Nili, V. Afroughsabet, An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete, Int. J. Impact Eng. 46 (2012) 62-73.
DOI: 10.1016/j.ijimpeng.2012.01.009
Google Scholar
[6]
M. Mastali, A. Dalvand, A. Sattarifard, The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fiber reinforced polymers, J. Clean Product. 124 (2016) 312-324.
DOI: 10.1016/j.jclepro.2016.02.148
Google Scholar
[7]
M. K. Ismail, A. A. Hassan, Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers, ASCE J. Mater. Civil Eng. 29 (2017)1-14.
DOI: 10.1061/(asce)mt.1943-5533.0001731
Google Scholar
[8]
Y. Ding, D. Li, Y. Zhang, C. Azevedo, Experimental investigation on the composite effect of steel rebars and macro fibers on the impact behavior of high performance self-compacting concrete, Constr. Build. Mater. 136 (2017) 495-505.
DOI: 10.1016/j.conbuildmat.2017.01.073
Google Scholar
[9]
M. K. Ismail, A. A. A. Hassan, M. Lachemi, Performance of self-consolidating engineered cementitious composite under drop-weight impact loading, ASCE J. Mater. Civil Eng. 31 (2019) 1-11.
DOI: 10.1061/(asce)mt.1943-5533.0002619
Google Scholar
[10]
S. R. Abid, M. S. Shamkhi, N. S. Mahdi, Y. H. Daek, Mechanical Properties of PP-Based Engineered Cementitious Composites, Int. Conf. Adv. Sustainable Eng. Appl. (ICASEA), Wasit University, Kut, Iraq, (2018), 142-146.
DOI: 10.1109/icasea.2018.8370972
Google Scholar
[11]
A. Abbass, S. Abid, M. Özakça, Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high-strength concrete hollow beams, Adv. Civil Eng. 2019 (2019) 1-13.
DOI: 10.1155/2019/8390345
Google Scholar
[12]
A. A. Abbass, S. R. Abid, F. H. Arna'ot, R. A. Al-Ameri, M. Özakça, Flexural response of hollow high strength concrete beams considering different size reductions, Struct. 23 (2020) 69-86.
DOI: 10.1016/j.istruc.2019.10.001
Google Scholar
[13]
S. R. Abid, K. Al-Lami, Critical review of strength and durability of concrete beams externally bonded with FRP, Cogent Eng. 5 (2018) 1-27.
DOI: 10.1080/23311916.2018.1525015
Google Scholar
[14]
S. R. Abid, A. Hilo, Y. H. Daek, Experimental tests on the underwater abrasion of engineered cementitious composites, Constr. Build. Mater. 171 (2018) 779-792.
DOI: 10.1016/j.conbuildmat.2018.03.213
Google Scholar
[15]
S. R. Abid, M. S. Shamkhi, N. S. Mahdi, Y. H. Daek, Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers, Constr. Build. Mater. 187 (2018) 168-177.
DOI: 10.1016/j.conbuildmat.2018.07.194
Google Scholar
[16]
S. R. Abid, A. Hilo, N. S. Ayoob, Y. H. Daek, Underwater abrasion of steel fiber-reinforced self-compacting concrete, Case Stud. Constr. Mater. 11 (2019) 1-17.
DOI: 10.1016/j.cscm.2019.e00299
Google Scholar