Potential-Magnetic Composite of Fe3O4/Activated Carbon from Palm Oil Shell

Article Preview

Abstract:

Composite of Fe3O4/activated carbon was synthesized from activated carbon by mixing with Fe(II) and Fe(III) using ethanol and treated with hydrothermal process at 250°C for 2 hours. Previous treatment, activated carbon was prepared from palm oil shell using potassium hydroxide as a chemical activation and pyrolyzed at 500°C for 3 hours. Surface area composite of Fe3O4/activated carbon is 8.05 m²/g. However, the X-ray diffraction analysis shows that Fe3O4/activated carbon has crystalline phase which tend to amorphous phase. Characterization using FTIR show that the composite has Fe-O on 557 cm-1. The Composite of Fe3O4/activated carbon has been successfully synthesized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

68-72

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. W. Widiarsi, I. M Fahrurrozi, Pengaruh Bahan Baku Terhadap Kadar Senyawa Fenol Pembuatan Asap Cair (Liquid Smoke) dari Limbah Kelapa Sawit Di Kabupaten Pasir-Kalimantan Timur, Diss. Universitas Gadjah Mada, (2008).

Google Scholar

[2] A. Arami-Niya, W. M. A. W. Daud, F. S. Mjalli, Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption, Chem. Eng. Res. Design, 89(6) (2011) 657-664.

DOI: 10.1016/j.cherd.2010.10.003

Google Scholar

[3] A. Md Noor, M. A. Mohd Nawi, H. Khalid, Toward production of the micro-and mesoporous activated carbon from oil palm shell by chemical activation process with ZnCl2, H3PO4 and KOH under nitrogen and carbon dioxide condition, Eng. Our Future: Are we up to the Challenge? Burswood Ent. Comp. (2009) 1438.

Google Scholar

[4] T. Saragi, et al. Karakteristik Nanopartikel ZnO Studi Efek Pelarut Pada Proses Hidrothermal, J. Mater. dan Energi Indonesia, 6(01) (2016).

Google Scholar

[5] R. Elhajjar, V. La Saponara, A. Muliana, Smart Composites: Mechanics and Design, CRC Press, (2013) ISBN 978-1-138-07551-1.

DOI: 10.1201/b16257

Google Scholar

[6] M. S. Solis, M. Titirici, Hydrothermal carbonization: a greener route towards the synthesis of advanced carbon materials, Bol. Grupo. Espanol Carbon, 25 (2012) 7-17.

Google Scholar

[7] L. Fiori, D. Bassoa, D. Castelloa, M. Baratierib, Hydrothermal carbonization of biomass: Design of a batch reactor and preliminary experimental results, Chem. Eng. Trans. 37(5) (2014).

Google Scholar

[8] A. G. Adebisi, Z. Z. Chowdhury, S. B. Abd Hamid, M. E. Ali, Activated carbons for removal of Pb(II) and Zn(II) prepared by phosphoric acid activation of hydrothermally treated banana empty fruit bunch using box-behnken design, BioRes. 11(3) (2016) 9686-9709.

DOI: 10.15376/biores.11.4.9686-9709

Google Scholar

[9] M. Arief, Sintesis dan karakterisasi nanopartikel seng oksida (ZnO) dengan metode proses pengendapan kimia basah dan hydrothermal untuk aplikasi fotokatalis, Program Studi Teknik Metalurgi dan Material Fakultas Teknik Universitas Indonesia, Jakarta, (2011).

DOI: 10.32734/jtk.v11i2.9127

Google Scholar

[10] M. M. Nasser, M. S. El-Geundi, Comparative cost of color removal from textile ef- fluents using natural adsorbents, J. Chem. Technol. Biotechnol. 50(2) (1991) 257-264.

DOI: 10.1002/jctb.280500210

Google Scholar

[11] B. H. Hameed, F. B. M. Daud, Adsorption studies of basic dye on activated carbon derived from agricultural waste: hevea brasiliensis seed coat, Chem. Eng. J. 139(1) (2008) 48-55.

DOI: 10.1016/j.cej.2007.07.089

Google Scholar

[12] B. H. Hameed, R. R. Krishni, S. A. Sata, A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions, J. Hazard. Mater. 162(1) (2009) 305-311.

DOI: 10.1016/j.jhazmat.2008.05.036

Google Scholar

[13] L. Ai, Y. Zhou, J. Jiang, Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance, Desalination, 266.1-3 (2001) 72-77.

DOI: 10.1016/j.desal.2010.08.004

Google Scholar

[14] X. Jin, K. Zhang, J. Sun, J. Wang, Z. Dong, R. Li, Magnetite nanoparticles immobilized salen Pd(II) as a green catalyst for Suzuki reaction, Catalysis Comm. 26 (2012) 199-203.

DOI: 10.1016/j.catcom.2012.05.026

Google Scholar

[15] J. W. Jusin, M. Aziz, G. P. Sean, J. Jaafar, Preparation and characterization of graphene-based magnetic hybrid nano composite, Malay. J. Analyt. Sci. 20(1) (2016) 149-156.

DOI: 10.17576/mjas-2016-2001-16

Google Scholar