Preparation and Structures of Ni/Natural Rubber Promoted Carbon Nanofiber Branches via One-Step Carbonization Process

Article Preview

Abstract:

A novel nickel (Ni) and natural rubber loaded carbon nanofiber branches were prepared by electrospinning process followed by conventional heat treatment processes. This research utilized a one-step carbonization process using electrospun fibers from one-pot solution consisting of Ni, natural rubber cup lump (NR) and polyacrylonitrile (PAN). The as-spun nanofibers were successfully prepared for different types of NR-PAN and NiNR-PAN samples. The obtained nanofibers were stabilized at 260 °C for 2 h and then cooled to room temperature. The stabilized fibers were continued calcined at 900 °C for 1 h under N2 atmosphere. Samples were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), and Field Emission Scanning Electron Microscopy (FESEM). NR-PAN sample showed a uniform surface whereas tiny branches were found on NiNR-PAN sample. The carbon nanofiber branches with 48.29 nm diameter were observed on the parent carbon fiber surface with 700-800 nm diameter. Furthermore, only metallic Ni nanoparticles was formed and the average size of Ni nanoparticles calculated XRD result was 14.15 nm. SEM images showed that Ni nanoparticles were well dispersed on CNFs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. M. Al-Enizi, A. Nafady, M. M. El-Halwany, R. M. Brooks, A. Abutaleb, A. Yousef, Electrospun carbon nanofiber-encapsulated NiS nanoparticles as an efficient catalyst for hydrogen production from hydrolysis of sodium borohydride, Int. J. hydrog. Energy, 44(39) (2019) 21716-21725.

DOI: 10.1016/j.ijhydene.2019.06.152

Google Scholar

[2] J. Díez-Ramirez, P. Sánchez, A. Rodriguez-Gomez, J. L. Valverde, F. Dorado, Carbon nanofiber-based palladium/zinc catalysts for the hydrogenation of carbon dioxide to methanol at atmospheric pressure, Indus. Eng. Chem. Res. 55(12) (2016) 3556-3567.

DOI: 10.1021/acs.iecr.6b00170

Google Scholar

[3] L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications, J. Mater. Sci. 49(2) (2014) 463-480.

DOI: 10.1007/s10853-013-7705-y

Google Scholar

[4] S. Y. Gu, J. Ren, Q. L. Wu, Preparation and structures of electrospun PAN nanofibers as a precursor of carbon nanofibers, Synth. Met. 155(1) (2005) 157-161.

DOI: 10.1016/j.synthmet.2005.07.340

Google Scholar

[5] J. A. Walker Jr, K. L. Vickerman, J. N. Humke, L. M. Stanley, Ni-Catalyzed alkene carboacylation via amide C–N Bond activation, J. Am. Chem. Soc. 139(30) (2017) 10228-10231.

DOI: 10.1021/jacs.7b06191

Google Scholar

[6] Y. Yao, J. Zhang, H. Chen, M. Yu, M. Gao, Y. Hu, S. Wang, Ni 0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium, Appl. Surf. Sci. 440 (2018) 421-431.

DOI: 10.1016/j.apsusc.2018.01.123

Google Scholar

[7] M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning, Adv. Mater. 24(19) (2012) 2547-2566.

DOI: 10.1002/adma.201104940

Google Scholar

[8] A. Aytac, M. Gurbuz, A. E. Sanli, Electrooxidation of hydrogen peroxide and sodium borohydride on Ni deposited carbon fiber electrode for alkaline fuel cells, Int. J. Hydrog. Energy, 36(16) (2011) 10013-10021.

DOI: 10.1016/j.ijhydene.2011.05.079

Google Scholar

[9] K. Karakas, A. Celebioglu, M. Celebi, T. Uyar, M. Zahmakiran, Nickel nanoparticles decorated on electrospun polycaprolactone/chitosan nanofibers as flexible, highly active and reusable nanocatalyst in the reduction of nitrophenols under mild conditions, Appl. Catal. B-Environ. 203 (2017) 549-562.

DOI: 10.1016/j.apcatb.2016.10.020

Google Scholar

[10] T. Hussain, Y. Wang, Z. Xiong, J. Yang, Z. Z. Xie, J. Liu, Fabrication of electrospun trace NiO-doped hierarchical porous carbon nanofiber electrode for capacitive deionization, J. Colloid Interface Sci. 532 (2018) 343-351.

DOI: 10.1016/j.jcis.2018.07.129

Google Scholar

[11] Y. Wu, R. Balakrishna, M. V. Reddy, A. Sreekumaran Nair, B. V. R. Chowdari, S. Ramakrishna, Functional properties of electrospun NiO/RuO2 composite carbon nanofibers, J. Alloys Compd. 517 (2012) 69-74.

DOI: 10.1016/j.jallcom.2011.12.019

Google Scholar

[12] I. Shimada, T. Takahagi, M. Fukuhara, K. Morita, A. Ishitani, FT‐IR study of the stabilization reaction of polyacrylonitrile in the production of carbon fibers, J. Polym. Sci. Part A. 24(8) (1986), 1989-1995.

DOI: 10.1002/pola.1986.080240819

Google Scholar

[13] Q. Dai, X. Jia, F. Yang, C. Bai, Y. Hu, X. Zhang, Iminopyridine-based cobalt(II) and nickel(II) Complexes: synthesis, characterization, and their catalytic behaviors for 1,3-butadiene polymerization, Polymers, 8.1 (2016) 12.

DOI: 10.3390/polym8010012

Google Scholar

[14] S. Akyuz, An infrared and raman spectroscopic study of metal(II) di(2-Methylpyridine) tetracyanonickelate complexes: Ni(C6HTN)2Ni(CN)4 and Cd(C6HTN)2Ni(CN)4, J. Incl. Phenom. M, 3 (1985), 403-407.

DOI: 10.1007/bf00657492

Google Scholar

[15] C. Alegre, E. Modica, A. Di Blasi, O. Di Blasi, C. Busacca, M. Ferraro, A. S. Aricò, V. Antonucci, V. Baglio, NiCo-loaded carbon nanofibers obtained by electrospinning: Bifunctional behavior as air electrodes, Renewable energy, 125 (2018), 250-259.

DOI: 10.1016/j.renene.2018.02.089

Google Scholar

[16] D. Lee, J. Kim, J. Moon, Electrospun Ni-added SnO2−carbon nanofiber composite anode for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces. 4 (2012), 5408−5415.

DOI: 10.1021/am301328u

Google Scholar

[17] J. H. Oh, M. S. Jo, S. M. Jeong, C. Cho, Y. C. Kang, J. S. Cho, New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries, J IND ENG CHEM. 77 (2019), 76-82.

DOI: 10.1016/j.jiec.2019.04.021

Google Scholar

[18] A. L. Patterson, The Scherrer formula for X-Ray particle size determination, Phys. Rev. 56(10) (1939) 978.

DOI: 10.1103/physrev.56.978

Google Scholar

[19] S. Gu, Q. Wu, J. Ren, Preparation and surface structures of carbon nanofibers produced from electrospun PAN precursors, New Carbon Mater. 23(2) (2008) 171-176.

DOI: 10.1016/s1872-5805(08)60021-9

Google Scholar

[20] S. H. Yoo, H. Joh, S. Lee, Synthesis of porous carbon nanofiber with bamboo-like carbon nanofiber branches by one-step carbonization process, Appl. Surf. Sci. 402 (2017) 456-462.

DOI: 10.1016/j.apsusc.2017.01.154

Google Scholar