[1]
A. S. Al-Harthy, the properties of concrete made with fine dune sand, Construct. Build. Mater. 21 (2007) 1803-1808.
DOI: 10.1016/j.conbuildmat.2006.05.053
Google Scholar
[2]
ACI 226.1R-87, Ground granulated blast-furnace slag as a cementitious constituent in concrete, ACI Manual of Concrete Practice, Part 1: Materials and General Properties of Concrete, Detroit, Michigan, (1994) 16 pp.
DOI: 10.14359/1623
Google Scholar
[3]
A. Gholampour, Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag, J. Cleaner Product. 162 (2017) 1407-1417.
DOI: 10.1016/j.jclepro.2017.06.087
Google Scholar
[4]
C. D. Atis, C. Bilim, Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag, Build. Environ. 42(8) (2007) 3060-3065.
DOI: 10.1016/j.buildenv.2006.07.027
Google Scholar
[5]
K. G. Babu, V. S. R. Kumar, Efficiency of GGBS in concrete, Cem. Concr. Res. 30(7) (2000) 1031-1036.
Google Scholar
[6]
Belferrag Allaoua, Contribution to the improvement of the mechanical and rheological properties of dune sand concretes, doctor thesis specializes civil engineering, Mohamed Khider University, Algeria, 2016, p.22.
Google Scholar
[7]
N. Bouzoubaa, M. H. Zhang, V. M. Malhotra, Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash, Cem. Concr. Res. 31(10) (2001) 1393-1402.
DOI: 10.1016/s0008-8846(01)00592-0
Google Scholar
[8]
E. H. Yang, Y. Z. Yang, C. Victor Li, Use of high volumes of fly ash to improve ECC mechanical properties and material greenness, ACI Mater. J. 104 (2007) 303-310.
DOI: 10.14359/18966
Google Scholar
[9]
E. Horszczaruk, Abrasion resistance of high-strength concrete in hydraulic structures, Wear, 259(1-6) (2005) 62-69.
DOI: 10.1016/j.wear.2005.02.079
Google Scholar
[10]
J. M. Khatib, J. J. Hibbert, Selected engineering properties of concrete incorporating slag and metakaolin, Construct. Build. Mater. 19(6) (2005) 460-472.
DOI: 10.1016/j.conbuildmat.2004.07.017
Google Scholar
[11]
L. Lam, Y. L. Wong, C. S. Poon, Effect of fly ash and silica fume on compressive and fracture behaviors of concrete, Cem. Concr. Res. 28 (1998) 271-283.
DOI: 10.1016/s0008-8846(97)00269-x
Google Scholar
[12]
G. Li, X. Zhao, Properties of concrete incorporating fly ash and ground granulated blast-furnace slag, Cem. Concr. Compos. 25(3) (2003) 293-299.
DOI: 10.1016/s0958-9465(02)00058-6
Google Scholar
[13]
P. K. Mehta, High –Performance, High–Volume Fly Ash Concrete for Sustainable Development, Int. Workshop Sustainable Develop. Concr. Technol. (2004).
Google Scholar
[14]
J. W. Meusel, J. H. Rose, Production of granulated blast furnace slag at sparrow's point and the workability and strength potential of concrete incorporating the slag, ACI Special Publication SP, Dr. Farmington Hills, 79 (1983) 867-890.
DOI: 10.14359/6075
Google Scholar
[15]
N. A. Mohd Nasir, F. N. A. Abd Aziz, N. A. Safiee, Hydration of the combinations of ground granulated blast furnace slag cements, Aust. J. Basic Appl. Sci. 8(1) (2014) 392-396.
Google Scholar
[16]
A. Nazari, S. Riahi, splitting tensile strength of concrete using ground granulated blast furnace slag and sio2 nanoparticles as binder, Energy Build. 43(4) (2011) 864-872.
DOI: 10.1016/j.enbuild.2010.12.006
Google Scholar
[17]
A. M. Neville, Properties of Concrete, 5th edn. London, (2011).
Google Scholar
[18]
Nguyen Thanh Sang, Research on Proportions, some Mechanical Properties of Sand Concrete for Using to Construct Pavement in Viet Nam, Ph.D, Civil Engineering, University of Transport and Communications, Hanoi, Vietnam (2010).
Google Scholar
[19]
C. Parra, M. Valcuende, F. Gomez, splitting tensile strength and modulus of elasticity of self-compacting concrete, Construct. Build. Mater. 25(1) (2011) 201-207.
DOI: 10.1016/j.conbuildmat.2010.06.037
Google Scholar
[20]
R. Siddique, M. I. Khan, Supplementary Cementing Materials, Springer-Verlag Berlin Heidelberg, 37 (2011).
Google Scholar
[21]
P. Shafigh, M. A. Nomeli, U. J. Alengaram, H. B. Mahmud, M. Z. Jumaat, Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash, J. Clean. Prod. 135 (2011) 148-157.
DOI: 10.1016/j.jclepro.2016.06.082
Google Scholar
[22]
M. X. Shi, Q. Wang, Z. K. Zhou, Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition, Construct. Build. Mater. 98 (2015) 649-655.
DOI: 10.1016/j.conbuildmat.2015.08.134
Google Scholar
[23]
Tran Trung Hieu, Reserch on using fly ash pavement concrete to construct Pavement in Viet Nam , Ph.D, Civil Engineering, University of Transport and Communications, Hanoi, Vietnam (2017).
Google Scholar
[24]
V. G. Papadakis, Effect of fly ash on Portland cement systems. Part I. Lowcalcium fly ash, Cem. Concr. Res. 29(11) (1999) 1727-1736.
DOI: 10.1016/s0008-8846(99)00153-2
Google Scholar
[25]
W. P. Ma, P. W. Brown, Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO42H2O, Cem. Concr. Res. 27(8) (1997) 1237-1248.
Google Scholar
[26]
W. Wongkeo, P. Thongsanitgarn, A. Ngamjarurojana, A. Chaipanich, Compressive strength and chloride resistance of self-compacting concrete containing high level fly ash and silica fume, Mater. Des. 64 (2014) 261-269.
DOI: 10.1016/j.matdes.2014.07.042
Google Scholar
[27]
X. Y. Wang, H. S. Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cement Concr. Res. 40 (2010) 984-996.
DOI: 10.1016/j.cemconres.2010.03.001
Google Scholar
[28]
H. Yazıcı, M. Y. Yardımcı, S. Aydın, A. S. Karabulut, Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes, Constr. Build. Mater. 23 (2009) 1223-1231.
DOI: 10.1016/j.conbuildmat.2008.08.003
Google Scholar