An Investigation on the Surface Integrity of Grade 5 Titanium Alloy Proceeding the Wire Electro-Discharge Machining (WEDM) Process

Article Preview

Abstract:

This paper presents the experimental work of the surface roughness, surface topography, elementary analysis and microhardness of wire electro-discharge (WEDM) machining of grade 5 titanium alloy (Ti-6Al-4V). Ti-6Al-4V has wide range of application in alloys due to its superior mechanical properties such as corrosion resistance, high tensile strength and toughness. Based on its great hardness value, conventional machining leads to high rates of tool wear, thus, WEDM is an alternative to manufacture Ti-6Al-4V, in which better surface characteristics can be produced. This work explores the surface integrity of Ti-6Al-4V alloy after WEDM in different input parameter. From the experimental work, good surface integrity can be achieved with low peak current. The scanning electron microscope (SEM) analysis depicted the appearance of craters, crack, recast layer and globule of debris on the machined surface. Within the chemical composition on the machined surface, titanium seizes the highest percentage as there is no alternation of the metallurgical structure of the parent material. The microhardness value gradually increases from the machined surface to the parent material of Ti-6Al-4V due to over-aging of the machined surface and the work hardening during the process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

144-155

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. F. Klocke, D. Welling*, J. Dieckmann, Titanium Parts for Medical Sector Made by Wire-EDM,, no. May 2012, (2015).

Google Scholar

[2] S. Prasad, K. T. Mannan, and A. Krishnaiah, Surface Integrity Characteristics in Wire Electrical Discharge Machining of Titanium Alloy during Main cut and Trim cuts,, Mater. Today Proc., vol. 4, no. 2, p.1500–1509, (2017).

DOI: 10.1016/j.matpr.2017.01.172

Google Scholar

[3] S. Suresh, D. A. Hamid, M. Yazid, N. R. Che Daud, and N. N. L. Mohd Din, An Investigation into the Impact of Flexural Elastic Modulus on the Dimensional Instability in CNC Turning of Titanium Alloy Grade,, J. Mech. Eng., vol. 3, no. 2, p.73–85, (2017).

Google Scholar

[4] A. Pramanik, Problems and Solutions in Machining of Titanium Alloys,, Int. J. Adv. Manuf. Technol., vol. 70, no. 5–8, p.919–928, (2014).

DOI: 10.1007/s00170-013-5326-x

Google Scholar

[5] A. Pramanik, M. N. Islam, A. Basak, and G. Littlefair, Machining and Tool Wear Mechanisms during Machining Titanium Alloys,, Adv. Mater. Res., vol. 651, p.338–343, (2013).

DOI: 10.4028/www.scientific.net/amr.651.338

Google Scholar

[6] R. Chalisgaonkar and J. Kumar, Process capability analysis and optimization in WEDM of commercially pure titanium,, Procedia Eng., vol. 97, p.758–766, (2014).

DOI: 10.1016/j.proeng.2014.12.306

Google Scholar

[7] V. R. Surya, K. M. V. Kumar, R. Keshavamurthy, G. Ugrasen, and H. V Ravindra, Prediction of Machining Characteristics using Artificial Neural Network in Wire EDM of Al7075 based In-situ Composite,, Mater. Today Proc., vol. 4, no. 2, p.203–212, (2017).

DOI: 10.1016/j.matpr.2017.01.014

Google Scholar

[8] J. B. Saedon, N. Jaafar, and M. Azman, Multi-objective Optimization of Titanium Alloy Through Orthogonal Array and Grey Relational Analysis in WEDM,, Procedia Technol., vol. 15, p.832–840, (2014).

DOI: 10.1016/j.protcy.2014.09.057

Google Scholar

[9] K. Mouralova, J. Kovar, L. Klakurkova, T. Prokes, and M. Horynova, Comparison of Morphology and Topography of Surfaces of WEDM Machined Structural Materials,, Meas. J. Int. Meas. Confed., vol. 104, p.12–20, (2017).

DOI: 10.1016/j.measurement.2017.03.009

Google Scholar

[10] A. V Linovsky and A. P. Morgunov, The Influence of Steel 35 Wire EDM Parameters on the Surface Roughness and Morphology,, J. Mech. Eng., vol. 14, no. 2, p.36–48, (2017).

Google Scholar

[11] L. Manufacturing and L. Sigma, Experimental Study of Process Parameters through Dissimilar Form of Electrodes in EDM Machining Experimental Study of Process Parameters through Dissimilar Form of Electrodes in EDM Machining,, no. January, p.0–31, (2016).

DOI: 10.2139/ssrn.2947443

Google Scholar

[12] S. R. Pujari, R. Koona, and S. Beela, Surface Integrity of Wire EDMed Aluminum Alloy: A Comprehensive Experimental Investigation,, J. King Saud Univ. - Eng. Sci., (2016).

DOI: 10.1016/j.jksues.2016.12.001

Google Scholar

[13] P. J. S, H. V Ravindra, G. Ugrasen, N. P. G. V, and Y. S. Rammohan, Study of Surface Roughness and AE Signals while Machining Titanium Grade-2 Material using ANN in WEDM,, Mater. Today Proc., vol. 4, no. 9, p.9557–9560, (2017).

DOI: 10.1016/j.matpr.2017.06.223

Google Scholar

[14] I. Maher, A. A. D. Sarhan, and H. Marashi, Effect of Electrical Discharge Energy on White Layer Thickness of WEDM Process, vol. 1–3. Elsevier Ltd., (2016).

DOI: 10.1016/b978-0-12-803581-8.09154-2

Google Scholar

[15] M. Y. Ã and Y. Liu, International Journal of Machine Tools & Manufacture Design , analysis and experimental study of a high-frequency power supply for finish cut of wire-EDM,, Int. J. Mach. Tools Manuf., vol. 49, no. 10, p.793–796, (2009).

DOI: 10.1016/j.ijmachtools.2009.04.004

Google Scholar

[16] S. Prasad Arikatla, K. Tamil Mannan, and A. Krishnaiah, Parametric Optimization in Wire Electrical Discharge Machining of Titanium Alloy Using Response Surface Methodology,, Mater. Today Proc., vol. 4, no. 2, p.1434–1441, (2017).

DOI: 10.1016/j.matpr.2017.01.165

Google Scholar

[17] B. E. J. Lee, S. Ho, G. Mestres, M. Karlsson Ott, P. Koshy, and K. Grandfield, Dual-topography Electrical Discharge Machining of Titanium to Improve Biocompatibility,, Surf. Coatings Technol., vol. 296, p.149–156, (2016).

DOI: 10.1016/j.surfcoat.2016.04.024

Google Scholar

[18] B. R. Chauhan, P. H. Agarwal, and S. D. Daxini, A Review on the Conventional and Wire-Electro Discharge Machining of Titanium and Its Alloys,, Int. J. Recent Sci. Res., vol. 9, no. 3, p.25311–25322, (2017).

Google Scholar

[19] A. Kumar, V. Kumar, and J. Kumar, An Investigation into Machining Characteristics of Commercially Pure Titanium ( Grade-2 ) using CNC WEDM,, Appl. Sci. Mater., vol. 159, p.56–68, (2012).

DOI: 10.4028/www.scientific.net/amm.159.56

Google Scholar

[20] C. Deneş et al., Investigation of the Surface Integrity and Fatigue Strength of Inconel718 After Wire EDM and Machine Hammer Peening,, Int. J. Mater. Form., vol. 50, no. 5–8, p.611–624, (2015).

DOI: 10.1007/s12289-015-1249-4

Google Scholar

[21] J. F. Liu, Y. B. Guo, T. M. Butler, and M. L. Weaver, Crystallography, Compositions, and Properties of White Layer by Wire Electrical Discharge Machining of Nitinol Shape Memory Alloy,, Mater. Des., vol. 109, p.1–9, (2016).

DOI: 10.1016/j.matdes.2016.07.063

Google Scholar

[22] F. Klocke, L. Hensgen, A. Klink, L. Ehle, and A. Schwedt, Structure and Composition of the White Layer in the Wire-EDM Process,, Procedia CIRP, vol. 42, no. Isem Xviii, p.673–678, (2016).

DOI: 10.1016/j.procir.2016.02.300

Google Scholar