[1]
Seed H. B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes [J]. Journal of Geotechnical Engineering Division, ASCE, 1979, 105(GT2): 201-255.
DOI: 10.1061/ajgeb6.0000768
Google Scholar
[2]
Seed, H. B., and Idriss, I. M. (1982). Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute, Berkeley, Calif.
Google Scholar
[3]
Seed, H. B., Tokimatsu, K., Harder, L. F., and Chung, R. M. (1985). ''The influence of SPT procedures in soil liquefaction resistance evaluations.'' J. Geotech. Engrg., ASCE, 111(12), 1425–1445.
DOI: 10.1061/(asce)0733-9410(1985)111:12(1425)
Google Scholar
[4]
Youd T.L., and Idriss I.M. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils [R]. NCEER Technical Report, 1997, NCEER-97-0022, Buffalo, NY.
DOI: 10.1061/(asce)1090-0241(2001)127:4(297)
Google Scholar
[5]
Seed R.B, Cetin K.O. et al. Recent Advances in Soil Liquefaction Engineering, A Unified and Consistent Framework[R]. EERC,USA:Earthquake Engineering Research Center,2003.
Google Scholar
[6]
Andrus R.D. and Stokoe K.H.II. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000, 126(11): 1015-1025.
DOI: 10.1061/(asce)1090-0241(2000)126:11(1015)
Google Scholar
[7]
Brady Ray Cox, M.S. Development of a Direct Test Method for Dynamically Assessing the Liquefaction Resistance of Soils in Situ[D]. 2006,The University of Texas at Austin, PhD dissertation.
Google Scholar
[8]
Youd T L,Idriss I M. Liquefaction Resistance of Soils:Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils[J]. Journal of Geotechnical and Geoenvironment Engineering, 2001, 127(4): 297-313.
DOI: 10.1061/(asce)1090-0241(2001)127:4(297)
Google Scholar
[9]
Dobry, R., Stokoe, K. H., II, Ladd, R. S., and Youd, T. L. (1981). ''Liquefaction susceptibility from S-wave velocity,'' Proc., ASCE Nat. Convention, In Situ Tests to Evaluate Liquefaction Susceptibility, ASCE, New York.
Google Scholar
[10]
Robertson, P. K., and Campanella, R. G. (1985). ''Liquefaction potential of sands using the CPT.'' J. Geotech. Engrg., ASCE, 111(3), 384–403.
DOI: 10.1061/(asce)0733-9410(1985)111:3(384)
Google Scholar
[11]
Robertson, P. K., Woeller, D. J., and Finn, W. D. L. (1992). ''Seismic cone penetration test for evaluating liquefaction potential under cyclic loading.'' Can. Geotech. J., Ottawa, 29, 686–695.
DOI: 10.1139/t92-075
Google Scholar
[12]
Stokoe, K. H., II, Lee, S. H. H., and Knox, D. P. (1985). ''Shear moduli measurements under true triaxial stresses.'' Proc., Adv. in the Art of Testing Soil Under Cyclic Conditions, ASCE, New York, 166–185.
Google Scholar
[13]
Tokimatsu, K., and Uchida, A. (1990). ''Correlation between liquefaction resistance and shear wave velocity.'' Soils and Found., Tokyo, 30(2), 33–42.
DOI: 10.3208/sandf1972.30.2_33
Google Scholar
[14]
Liao, S., and Whitman, R. V. (1986a). ''Overburden correction factors for SPT in sand.'' J. Geotech. Engrg., ASCE, 112(3), 373–377.
DOI: 10.1061/(asce)0733-9410(1986)112:3(373)
Google Scholar
[15]
Sykora D. W. Creation of A Data Base of Seismic Shear Wave Velocities for Correlation Analysis[R]. Geotech. Lab. Misc. Paper 1987, GL-87-26, U.S. Army Engr. Waterways Experiment Station, Vicksburg, Miss.
Google Scholar
[16]
Chen Guoxing, Zhang Kexu and Xie Junfei,(1996). "Methods of liquefaction potential with shear wave velocity as a field index and the Adaptability." Journal of Harbin university of Architecture and Engineering, Harbin 29(1),97-103.(in Chinese)
Google Scholar
[17]
Shi Zhaoji, Yu Shousong, Feng Wanling. Shear Wave velocity based Soil liquefaction Evaluation[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(1):74-80.(in Chinese)
Google Scholar
[18]
The National Standards Compilation Group of People¢s Republic of China. GB0011–2001 Code for seismic design of buildings[S]. Beijing:China Architecture and Building Press,2001. (in Chinese)
Google Scholar