Manufacturing a Model for Moving the Electrode of TIG Welding for the Rib Piper Connection

Article Preview

Abstract:

This paper provides a complete overview of the entire process of designing a welding head moving device and its implementation as a semi-automatic welding machine. The mechanical structure of the device is designed based on the size of the material pipe and the accompanying technical requirements. The system is equipped with an arc generator set and a rotary speed control unit allowing its use as an orbital welder.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

January 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. T. Do, T. A. Son, P. S. Minh, Study on external gas-assisted mold temperature control for improving the melt flow length of thin rib products in the injection molding process, Advances in Polymer Technology, 2019 (2019).

DOI: 10.1155/2019/5973403

Google Scholar

[2] S. C. Chen, C. Y. Lin, J. A. Chang, P. S. Minh, Gas-assisted heating technology for high aspect ratio microstructure injection molding, Advances in Mechanical Engineering, 5 (2013) 282906.

DOI: 10.1155/2013/282906

Google Scholar

[3] N. T. Giang, P. S. Minh, T. A. Son, T. M. T. Uyen, T. H. Nguyen, H. S. Dang, Study on external gas-assisted mold temperature control with the assistance of a flow focusing device in the injection molding process, Materials, 14 (2021) 965.

DOI: 10.3390/ma14040965

Google Scholar

[4] T. T. Do, T. M. T. Uyen, P. S. Minh, The Feasibility of an Internal Gas-Assisted Heating Method for Improving the Melt Filling Ability of Polyamide 6 Thermoplastic Composites in a Thin Wall Injection Molding Process, Polymers, 13(2021) 1004.

DOI: 10.3390/polym13071004

Google Scholar

[5] P. S. Minh, T. T. Do, T. M. T. Uyen, The feasibility of external gas-assisted mold-temperature control for thin-wall injection molding, Advances in Mechanical Engineering, 10 (2018) 1687814018806102.

DOI: 10.1177/1687814018806102

Google Scholar

[6] T. M. T. Uyen, N. T. Giang, T. T. Do, T. A. Son, P. S. Minh, External gas-assisted mold temperature control improves weld line quality in the injection molding process, Materials, 13 (2020) 2855.

DOI: 10.3390/ma13122855

Google Scholar

[7] S. M. Pham, T. D. Thanh, A study on the welding line strength of composite parts with various venting systems in injection molding process, Key Engineering Materials, 737 (2017) 70 – 76.

DOI: 10.4028/www.scientific.net/kem.737.70

Google Scholar

[8] P. S. Minh, M. T. Le, Improving the Melt Flow Length of Acrylonitrile Butadiene Styrene in Thin-Wall Injection Molding by External Induction Heating with the Assistance of a Rotation Device, Polymers, 13 (2021) 2288.

DOI: 10.3390/polym13142288

Google Scholar

[9] S. M. Pham, T. V. A. Duong, Effect of Vibrations on the Weld-Line Strength of Injection Molded Products, Solid State Phenomena, 330 (2022) 125 – 130.

DOI: 10.4028/p-3ko8h1

Google Scholar

[10] T. T. Do, P. S. Minh, N. Le, Effect of Tool Geometry Parameters on the Formability of a Camera Cover in the Deep Drawing Process, Materials, 14 (2021) 3993.

DOI: 10.3390/ma14143993

Google Scholar

[11] T. G. Nguyen, S. M. Pham, A. S. Tran, Verifying the Gas Heating Method for Injection Molding, Key Engineering Materials, 861 (2020) 188-192.

DOI: 10.4028/www.scientific.net/kem.861.188

Google Scholar

[12] S. M. Pham, V. V. Hoang, M. T. Le, An Optimization Case Study on Single Point Incremental Forming, Key Engineering Materials, 861 (2020) 95-100.

DOI: 10.4028/www.scientific.net/kem.861.95

Google Scholar

[13] T. D. Thanh, S. M. Pham, Study on Single Point Incremental Forming with the Roller Ball Tool for Increasing the Part Quality, Solid State Phenomena, 330 (2022) 33 – 37.

DOI: 10.4028/p-m62569

Google Scholar

[14] P. S. Minh, T. V. Phu, Study on the structure deformation in the process of gas metal arc welding (GMAW), American Journal of Mechanical Engineering, 2 (2014) 120 -124.

DOI: 10.12691/ajme-2-4-4

Google Scholar

[15] M. Islama, A. Buijk, M. Rais-Rohani, K. Motoyama, Simulation-based numerical optimization of arc welding process for reduced distortion in welded structures, Finite Elements in Analysis and Design, 84 (2014) 54 – 64.

DOI: 10.1016/j.finel.2014.02.003

Google Scholar

[16] V. S. Vishnu, M. Nadeera, V. M. Joy Varghese V.M, Numerical analysis of effect of process parameters on residual stress in a double side TIG welded low carbon steel plate, International Conference on Advances in Engineering & Technology, 23 (2014) 115 – 122.

Google Scholar

[17] Umar, Sarehati, N. Bakhary, A. Y. M. Yassin, Comparative study on design of experiment in frequency-based response surface methodology for damage detection, Applied Mechanics and Materials, 735 (2015) 168 – 173.

DOI: 10.4028/www.scientific.net/amm.735.168

Google Scholar

[18] A. Ravisankar, S. K. Velaga, G. Rajput, S. Venugopal, Influence of welding speed and power on residual stress during gas tungsten arc welding (GTAW) of thin sections with constant heat input: A study using numerical simulation and experimental validation, Journal of Manufacturing Processes, 16 (2) (2014) 200-21.

DOI: 10.1016/j.jmapro.2013.11.002

Google Scholar

[19] D. Kim, S. Choi, K. Pee, Y. Cho, S. Jeong, S.-H. Kim, Development of Orbital TIG Welding Robot System for the Pipe, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 7 (12) (2013) 2488 - 2492.

Google Scholar