Experimental Investigations on the Tensile and Bending Behaviour of Natural filler Particles Reinforced Polymer Composites

Article Preview

Abstract:

In recent years, the emphasis has shifted toward more precious minerals and composite structures to produce thinner, cheaper, more suitable materials for specific applications. The primary purpose of this study would be to determine how any walnut fillers perform in a vulgare biocomposite. The nanocomposite was created employing the most economical manual lay-up method. To accomplish the legitimate goal, the following descriptions have been levied: At different levels, (i) volume ratios of luffa thread, (ii) weight ratios of walnut powder, as well as (iii) freezing processing durations, all are accessible. The multilayer aggregates are in a freezing room set to 77 degrees Celsius. Tension and elastic modulus were tested mechanically. The morphological properties of powdered particles were detected using a scanning electron microscope. The mechanical integrity of 10% walnut shell powder, 40% luffa fabric, as well as 15-minute freezing treatments, surpasses 5 and 15% walnut shell granules.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-121

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.H. Nam, S. Ogihara, N.H. Tung, S. Kobayashi, Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites, Compos. Part B Eng. 42 (2011) 1648–1656.

DOI: 10.1016/j.compositesb.2011.04.001

Google Scholar

[2] A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, A.S. Adeoye, A review of coir fiber reinforced polymer composites, Compos. Part B Eng. 176 (2019) 107305.

DOI: 10.1016/j.compositesb.2019.107305

Google Scholar

[3] C. Hong, W. Ge, C. Hai-Tao, Properties of single bamboo fibers isolated by different chemical methods, Wood Fiber Sci. 43 (2011) 111–120.

Google Scholar

[4] R.A. Khan, M.A. Khan, H.U. Zaman, S. Pervin, N. Khan, S. Sultana, M. Saha, A.I. Mustafa, Comparative studies of mechanical and interfacial properties between jute and e-glass fiber-reinforced polypropylene composites, J. Reinf. Plast. Compos. 29 (2010) 1078–1088.

DOI: 10.1177/0731684409103148

Google Scholar

[5] I. Pillin, A. Kervoelen, A. Bourmaud, J. Goimard, N. Montrelay, C. Baley, Could oleaginous flax fibers be used as reinforcement for polymers?, Ind. Crops Prod. 34 (2011) 1556–1563.

DOI: 10.1016/j.indcrop.2011.05.016

Google Scholar

[6] L. Yan, N. Chouw, K. Jayaraman, Flax fibre and its composites - A review, Compos. Part B Eng. 56 (2014) 296–317.

DOI: 10.1016/j.compositesb.2013.08.014

Google Scholar

[7] G. Velmurugan, K. Babu, Statistical analysis of mechanical properties of wood dust filled Jute fiber based hybrid composites under cryogenic atmosphere using Grey-Taguchi method, Mater. Res. Express. 7 (2020).

DOI: 10.1088/2053-1591/ab9ce9

Google Scholar

[8] L. Natrayan, S. Kaliappan, S. Baskara Sethupathy, S. Sekar, Pravin P. Patil, S. Raja, G. Velmurugan, Dereje Bayisa Abdeta, Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocomposites,, Journal of Nanomaterials, vol. 2022, Article ID 7588699, 8 pages, 2022. https://doi.org/10.1155/2022/7588699.

DOI: 10.1155/2022/7588699

Google Scholar

[9] Z. Fan, M.H. Santare, S.G. Advani, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, Compos. Part A Appl. Sci. Manuf. 39 (2008) 540–554.

DOI: 10.1016/j.compositesa.2007.11.013

Google Scholar

[10] M. Puttegowda, H. Pulikkalparambil, S.M. Rangappa, Trends and Developments in Natural Fiber Composites, Appl. Sci. Eng. Prog. 14 (2021) 543–552.

DOI: 10.14416/j.asep.2021.06.006

Google Scholar

[11] J. Shen, Y.M. Xie, X. Huang, S. Zhou, D. Ruan, Behaviour of luffa sponge material under dynamic loading, Int. J. Impact Eng. 57 (2013) 17–26.

DOI: 10.1016/j.ijimpeng.2013.01.004

Google Scholar

[12] H.L. Bos, A.M. Donald, In situ ESEM deformation of flax fibres, J. Mater. Sci. 34 (1999) 3029–3034.

Google Scholar

[13] V.O.A. Tanobe, T.H.D. Sydenstricker, M. Munaro, S.C. Amico, A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica), Polym. Test. 24 (2005) 474–482.

DOI: 10.1016/j.polymertesting.2004.12.004

Google Scholar

[14] O.C.J.J. Bos, H.L., Van Den Oever, M.J.A. & Peters, Tensile and compressive properties of flax fibres.1023_A-1014925621252, J. Mater. Sci. 37 (2002) 1683–1692.

Google Scholar

[15] H. Essabir, E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, O. Al Gaoudi, Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles, Mater. Des. 49 (2013) 442–448.

DOI: 10.1016/j.matdes.2013.01.025

Google Scholar

[16] A.L. Pereira, M.D. Banea, J.S.S. Neto, D.K.K. Cavalcanti, Mechanical and thermal characterization of natural intralaminar hybrid composites based on sisal, Polymers (Basel). 12 (2020).

DOI: 10.3390/polym12040866

Google Scholar

[17] A. May-Pat, A. Valadez-González, P.J. Herrera-Franco, Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites, Polym. Test. 32 (2013) 1114–1122.

DOI: 10.1016/j.polymertesting.2013.06.006

Google Scholar

[18] K. Charlet, J.P. Jernot, S. Eve, M. Gomina, J. Bréard, Multi-scale morphological characterisation of flax: From the stem to the fibrils, Carbohydr. Polym. 82 (2010) 54–61.

DOI: 10.1016/j.carbpol.2010.04.022

Google Scholar

[19] K. Charlet, C. Baley, C. Morvan, J.P. Jernot, M. Gomina, J. Bréard, Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites, Compos. Part A Appl. Sci. Manuf. 38 (2007) 1912–(1921).

DOI: 10.1016/j.compositesa.2007.03.006

Google Scholar

[20] L. Natrayan, Anjibabu Merneedi, Dhinakaran Veeman, S. Kaliappan, P. Satyanarayana Raju, Ram Subbiah, S. Venkatesh Kumar, Evaluating the Mechanical and Tribological Properties of DLC Nanocoated Aluminium 5051 Using RF Sputtering,, Journal of Nanomaterials, vol. 2021, Article ID 8428822, 7 pages, 2021. https://doi.org/10.1155/2021/8428822.

DOI: 10.1155/2021/8428822

Google Scholar

[21] S.S. Chee, M. Jawaid, M.T.H. Sultan, O.Y. Alothman, L.C. Abdullah, Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites, J. Mater. Res. Technol. 9 (2020) 5871–5880.

DOI: 10.1016/j.jmrt.2020.03.114

Google Scholar

[22] N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites, Constr. Build. Mater. 123 (2016) 15–26.

DOI: 10.1016/j.conbuildmat.2016.06.131

Google Scholar

[23] T.A. Nguyen, T.H. Nguyen, Banana Fiber-Reinforced Epoxy Composites: Mechanical Properties and Fire Retardancy, Int. J. Chem. Eng. 2021 (2021).

DOI: 10.1155/2021/1973644

Google Scholar

[24] S. Niyasom, N. Tangboriboon, Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction, Constr. Build. Mater. 283 (2021) 122627.

DOI: 10.1016/j.conbuildmat.2021.122627

Google Scholar

[25] A. Balaji, R. Purushothaman, R. Udhayasankar, S. Vijayaraj, B. Karthikeyan, Study on Mechanical, Thermal and Morphological Properties of Banana Fiber-Reinforced Epoxy Composites, J. Bio- Tribo-Corrosion. 6 (2020).

DOI: 10.1007/s40735-020-00357-8

Google Scholar

[26] Manjunathan Karthick, M. Meikandan, S. Kaliappan, M. Karthick, S. Sekar, Pravin P. Patil, S. Raja, L. Natrayan, Prabhu Paramasivam, Experimental Investigation on Mechanical Properties of Glass Fiber Hybridized Natural Fiber Reinforced Penta-Layered Hybrid Polymer Composite,, International Journal of Chemical Engineering, vol. 2022, Article ID 1864446, 9 pages, 2022. https://doi.org/10.1155/2022/1864446.

DOI: 10.1155/2022/1864446

Google Scholar

[27] K. Rahul, H.S. Madhukar, M.N. Karthik, K.B. Pavana, P.D. Kenneth, D. Loyd, Processing and Characterisation of Banana Fiber Reinforced Polymer Nano Composite, Nanosci. Nanotechnol. 7 (2017) 34–37.

Google Scholar

[28] E. Bodros, I. Pillin, N. Montrelay, C. Baley, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?, Compos. Sci. Technol. 67 (2007) 462–470.

DOI: 10.1016/j.compscitech.2006.08.024

Google Scholar

[29] K.R. Sumesh, V. Kavimani, G. Rajeshkumar, S. Indran, A. Khan, Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural fibers and oil cake filler addition, J. Ind. Text. (2020) 1–28.

DOI: 10.1177/1528083720971344

Google Scholar

[30] I.S. Aji, E.S. Zainudin, K. Abdan, S.M. Sapuan, M.D. Khairul, Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite, J. Compos. Mater. 47 (2013) 979–990.

DOI: 10.1177/0021998312444147

Google Scholar

[31] Muruganantham Ponnusamy, L. Natrayan, S. Kaliappan, G. Velmurugan, Subash Thanappan, Effectiveness of Nanosilica on Enhancing the Mechanical and Microstructure Properties of Kenaf/Carbon Fiber-Reinforced Epoxy-Based Nanocomposites,, Adsorption Science & Technology, vol. 2022, Article ID 4268314, 10 pages, 2022. https://doi.org/10.1155/2022/4268314.

DOI: 10.1155/2022/4268314

Google Scholar

[32] M.S. Qatu, Application of kenaf-based natural fiber composites in the automotive industry, SAE 2011 World Congr. Exhib. (2011) 1–5.

DOI: 10.4271/2011-01-0215

Google Scholar