[1]
T.H. Nam, S. Ogihara, N.H. Tung, S. Kobayashi, Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly(butylene succinate) biodegradable composites, Compos. Part B Eng. 42 (2011) 1648–1656.
DOI: 10.1016/j.compositesb.2011.04.001
Google Scholar
[2]
A.G. Adeniyi, D.V. Onifade, J.O. Ighalo, A.S. Adeoye, A review of coir fiber reinforced polymer composites, Compos. Part B Eng. 176 (2019) 107305.
DOI: 10.1016/j.compositesb.2019.107305
Google Scholar
[3]
C. Hong, W. Ge, C. Hai-Tao, Properties of single bamboo fibers isolated by different chemical methods, Wood Fiber Sci. 43 (2011) 111–120.
Google Scholar
[4]
R.A. Khan, M.A. Khan, H.U. Zaman, S. Pervin, N. Khan, S. Sultana, M. Saha, A.I. Mustafa, Comparative studies of mechanical and interfacial properties between jute and e-glass fiber-reinforced polypropylene composites, J. Reinf. Plast. Compos. 29 (2010) 1078–1088.
DOI: 10.1177/0731684409103148
Google Scholar
[5]
I. Pillin, A. Kervoelen, A. Bourmaud, J. Goimard, N. Montrelay, C. Baley, Could oleaginous flax fibers be used as reinforcement for polymers?, Ind. Crops Prod. 34 (2011) 1556–1563.
DOI: 10.1016/j.indcrop.2011.05.016
Google Scholar
[6]
L. Yan, N. Chouw, K. Jayaraman, Flax fibre and its composites - A review, Compos. Part B Eng. 56 (2014) 296–317.
DOI: 10.1016/j.compositesb.2013.08.014
Google Scholar
[7]
G. Velmurugan, K. Babu, Statistical analysis of mechanical properties of wood dust filled Jute fiber based hybrid composites under cryogenic atmosphere using Grey-Taguchi method, Mater. Res. Express. 7 (2020).
DOI: 10.1088/2053-1591/ab9ce9
Google Scholar
[8]
L. Natrayan, S. Kaliappan, S. Baskara Sethupathy, S. Sekar, Pravin P. Patil, S. Raja, G. Velmurugan, Dereje Bayisa Abdeta, Investigation on Interlaminar Shear Strength and Moisture Absorption Properties of Soybean Oil Reinforced with Aluminium Trihydrate-Filled Polyester-Based Nanocomposites,, Journal of Nanomaterials, vol. 2022, Article ID 7588699, 8 pages, 2022. https://doi.org/10.1155/2022/7588699.
DOI: 10.1155/2022/7588699
Google Scholar
[9]
Z. Fan, M.H. Santare, S.G. Advani, Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes, Compos. Part A Appl. Sci. Manuf. 39 (2008) 540–554.
DOI: 10.1016/j.compositesa.2007.11.013
Google Scholar
[10]
M. Puttegowda, H. Pulikkalparambil, S.M. Rangappa, Trends and Developments in Natural Fiber Composites, Appl. Sci. Eng. Prog. 14 (2021) 543–552.
DOI: 10.14416/j.asep.2021.06.006
Google Scholar
[11]
J. Shen, Y.M. Xie, X. Huang, S. Zhou, D. Ruan, Behaviour of luffa sponge material under dynamic loading, Int. J. Impact Eng. 57 (2013) 17–26.
DOI: 10.1016/j.ijimpeng.2013.01.004
Google Scholar
[12]
H.L. Bos, A.M. Donald, In situ ESEM deformation of flax fibres, J. Mater. Sci. 34 (1999) 3029–3034.
Google Scholar
[13]
V.O.A. Tanobe, T.H.D. Sydenstricker, M. Munaro, S.C. Amico, A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica), Polym. Test. 24 (2005) 474–482.
DOI: 10.1016/j.polymertesting.2004.12.004
Google Scholar
[14]
O.C.J.J. Bos, H.L., Van Den Oever, M.J.A. & Peters, Tensile and compressive properties of flax fibres.1023_A-1014925621252, J. Mater. Sci. 37 (2002) 1683–1692.
Google Scholar
[15]
H. Essabir, E. Hilali, A. Elgharad, H. El Minor, A. Imad, A. Elamraoui, O. Al Gaoudi, Mechanical and thermal properties of bio-composites based on polypropylene reinforced with Nut-shells of Argan particles, Mater. Des. 49 (2013) 442–448.
DOI: 10.1016/j.matdes.2013.01.025
Google Scholar
[16]
A.L. Pereira, M.D. Banea, J.S.S. Neto, D.K.K. Cavalcanti, Mechanical and thermal characterization of natural intralaminar hybrid composites based on sisal, Polymers (Basel). 12 (2020).
DOI: 10.3390/polym12040866
Google Scholar
[17]
A. May-Pat, A. Valadez-González, P.J. Herrera-Franco, Effect of fiber surface treatments on the essential work of fracture of HDPE-continuous henequen fiber-reinforced composites, Polym. Test. 32 (2013) 1114–1122.
DOI: 10.1016/j.polymertesting.2013.06.006
Google Scholar
[18]
K. Charlet, J.P. Jernot, S. Eve, M. Gomina, J. Bréard, Multi-scale morphological characterisation of flax: From the stem to the fibrils, Carbohydr. Polym. 82 (2010) 54–61.
DOI: 10.1016/j.carbpol.2010.04.022
Google Scholar
[19]
K. Charlet, C. Baley, C. Morvan, J.P. Jernot, M. Gomina, J. Bréard, Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites, Compos. Part A Appl. Sci. Manuf. 38 (2007) 1912–(1921).
DOI: 10.1016/j.compositesa.2007.03.006
Google Scholar
[20]
L. Natrayan, Anjibabu Merneedi, Dhinakaran Veeman, S. Kaliappan, P. Satyanarayana Raju, Ram Subbiah, S. Venkatesh Kumar, Evaluating the Mechanical and Tribological Properties of DLC Nanocoated Aluminium 5051 Using RF Sputtering,, Journal of Nanomaterials, vol. 2021, Article ID 8428822, 7 pages, 2021. https://doi.org/10.1155/2021/8428822.
DOI: 10.1155/2021/8428822
Google Scholar
[21]
S.S. Chee, M. Jawaid, M.T.H. Sultan, O.Y. Alothman, L.C. Abdullah, Effects of nanoclay on physical and dimensional stability of Bamboo/Kenaf/nanoclay reinforced epoxy hybrid nanocomposites, J. Mater. Res. Technol. 9 (2020) 5871–5880.
DOI: 10.1016/j.jmrt.2020.03.114
Google Scholar
[22]
N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites, Constr. Build. Mater. 123 (2016) 15–26.
DOI: 10.1016/j.conbuildmat.2016.06.131
Google Scholar
[23]
T.A. Nguyen, T.H. Nguyen, Banana Fiber-Reinforced Epoxy Composites: Mechanical Properties and Fire Retardancy, Int. J. Chem. Eng. 2021 (2021).
DOI: 10.1155/2021/1973644
Google Scholar
[24]
S. Niyasom, N. Tangboriboon, Development of biomaterial fillers using eggshells, water hyacinth fibers, and banana fibers for green concrete construction, Constr. Build. Mater. 283 (2021) 122627.
DOI: 10.1016/j.conbuildmat.2021.122627
Google Scholar
[25]
A. Balaji, R. Purushothaman, R. Udhayasankar, S. Vijayaraj, B. Karthikeyan, Study on Mechanical, Thermal and Morphological Properties of Banana Fiber-Reinforced Epoxy Composites, J. Bio- Tribo-Corrosion. 6 (2020).
DOI: 10.1007/s40735-020-00357-8
Google Scholar
[26]
Manjunathan Karthick, M. Meikandan, S. Kaliappan, M. Karthick, S. Sekar, Pravin P. Patil, S. Raja, L. Natrayan, Prabhu Paramasivam, Experimental Investigation on Mechanical Properties of Glass Fiber Hybridized Natural Fiber Reinforced Penta-Layered Hybrid Polymer Composite,, International Journal of Chemical Engineering, vol. 2022, Article ID 1864446, 9 pages, 2022. https://doi.org/10.1155/2022/1864446.
DOI: 10.1155/2022/1864446
Google Scholar
[27]
K. Rahul, H.S. Madhukar, M.N. Karthik, K.B. Pavana, P.D. Kenneth, D. Loyd, Processing and Characterisation of Banana Fiber Reinforced Polymer Nano Composite, Nanosci. Nanotechnol. 7 (2017) 34–37.
Google Scholar
[28]
E. Bodros, I. Pillin, N. Montrelay, C. Baley, Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?, Compos. Sci. Technol. 67 (2007) 462–470.
DOI: 10.1016/j.compscitech.2006.08.024
Google Scholar
[29]
K.R. Sumesh, V. Kavimani, G. Rajeshkumar, S. Indran, A. Khan, Mechanical, water absorption and wear characteristics of novel polymeric composites: Impact of hybrid natural fibers and oil cake filler addition, J. Ind. Text. (2020) 1–28.
DOI: 10.1177/1528083720971344
Google Scholar
[30]
I.S. Aji, E.S. Zainudin, K. Abdan, S.M. Sapuan, M.D. Khairul, Mechanical properties and water absorption behavior of hybridized kenaf/pineapple leaf fibre-reinforced high-density polyethylene composite, J. Compos. Mater. 47 (2013) 979–990.
DOI: 10.1177/0021998312444147
Google Scholar
[31]
Muruganantham Ponnusamy, L. Natrayan, S. Kaliappan, G. Velmurugan, Subash Thanappan, Effectiveness of Nanosilica on Enhancing the Mechanical and Microstructure Properties of Kenaf/Carbon Fiber-Reinforced Epoxy-Based Nanocomposites,, Adsorption Science & Technology, vol. 2022, Article ID 4268314, 10 pages, 2022. https://doi.org/10.1155/2022/4268314.
DOI: 10.1155/2022/4268314
Google Scholar
[32]
M.S. Qatu, Application of kenaf-based natural fiber composites in the automotive industry, SAE 2011 World Congr. Exhib. (2011) 1–5.
DOI: 10.4271/2011-01-0215
Google Scholar