[1]
W. Yang. Macroscopic-microcosmic fracture mechanics [M]. National defense industry press, Beeijing, (1995).
Google Scholar
[2]
C. H. Zeng, S. J. Zou. Fatigue analysis method and Application [M]. National defense industry press, Beeijing, (1991).
Google Scholar
[3]
F. C. Campbell. Elements of metallurgy and engineering alloys[M]. Materials Park,OH: ASM International, (2008).
Google Scholar
[4]
B. Hu. The Present Condition and the Developing Trend of the Stress Testing Methods [J]. China special equipment safety, 2015, 31(12):9.
Google Scholar
[5]
F. Bacon. The Advancement of Learning [M]. New York: Da Capo Press, 1605.
Google Scholar
[6]
B. P. Chandra, A. K. K.Shrivastava. Dependence of mechanoluminescence in Rochelle-salt crystals on the charge-produced during their fracture [J]. J. Phys. Chem. Solids. 1978, 39(9): 939-940.
DOI: 10.1016/0022-3697(78)90107-5
Google Scholar
[7]
N. Terasaki, C. N Xu. . Mechanoluminescence Recording Device Integrated with Photosensitive Material and Europium-Doped SrAl2O4[J]. Japanese Journal of Applied Physics, 2009, 48:04C150.
DOI: 10.1143/jjap.48.04c150
Google Scholar
[8]
C. Pan, J. C. Zhang , M. Zhang, et al. Trap-controlled mechanoluminescence in Pr 3+ -activated M2Nb2O7(M = Sr, Ca) isomorphic perovskites[J]. Optical Materials Express, 2018, 8(6):1425.
DOI: 10.1364/ome.8.001425
Google Scholar
[9]
C. Li, C. N. Xu, L. Zhang, H. Yamada, Y. Imai. Dynamic visualization of stress distribution on metal by mechanoluminescence images. J Visualizat 2008;11:329–35.
DOI: 10.1007/bf03182201
Google Scholar
[10]
C. N. Xu, X. G. Zheng, M. Akiyama, et al. Dynamic visualization of stress distribution by mechanoluminescence image[J]. Applied Physics Letters, 2000, 76(2):179-181.
DOI: 10.1063/1.125695
Google Scholar
[11]
A. J.Walton. Triboluminescence [J]. Adv. Phys., 1977, 26(6): 887 948.
Google Scholar
[12]
W. Li , Q. Huang, M. Zhu , et al. Alkyl Chain Introduction: InSitu Solar‐Renewable Colorful Organic Mechanoluminescence Materials[J]. Angewandte Chemie International Edition, 2018, 57(39):12727-12732.
DOI: 10.1002/anie.201806861
Google Scholar
[13]
J. C. Zhang, L. Z. Zhao, Y. Z. Long, et al. Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect[J]. Chemistry of Materials, 2015, 27(21): 7481-7489.
DOI: 10.1021/acs.chemmater.5b03570
Google Scholar
[14]
C. N.Xu, T. Watanabe, M. Akiyama, et al. . Artificial skin to sense mechanical stress by visible light emission [J]. Appl. Phys. Lett. , 1999, 74( 9) : 1236-1238.
DOI: 10.1063/1.123510
Google Scholar
[15]
C. N. Xu, T. Watanabe, M. Akiyama, et al. . Direct view of stress distribution in solid by mechanoluminescence [J]. Appl. Phys. Lett. , 1999, 74( 17) : 2414-2416.
DOI: 10.1063/1.123865
Google Scholar
[16]
C. N. Xu, X. G. Zheng, Y.Watanabe, M.Akiyama, I.Usui. Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique[J]. Thin Solid Films, 1999, 352(1-2):273-277.
DOI: 10.1016/s0040-6090(99)00327-2
Google Scholar
[17]
L. J. Li. Explorational study on novel mechanoluminescencent materials[D]. South China University of technology.
Google Scholar
[18]
D. Tu, C. N. Xu , Y. Fujio, et al. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu[J]. Applied Physics Letters, 2014, 105(1):011908.
DOI: 10.1063/1.4890112
Google Scholar
[19]
D. Tu, C. N. Xu, Y. Fujio, et al. Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu[J]. light:Science & Applications, 2015, 4(1):7.
Google Scholar
[20]
B. Huang, D. Peng, C. Pan . Energy Relay Center, for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS[J]. Physical Chemistry Chemical Physics, 2016, 19(2):1190-1208.
DOI: 10.1039/c6cp07472c
Google Scholar
[21]
Y. Fujio, C. N. Xu, D. Tu, et al. Intense red emitting mechanoluminescence from CaZnOS:Mn,Li with c-axis preferred orientation[J]. Journal of Advanced Dielectrics, 2014, 4(3):1450017.
DOI: 10.1142/s2010135x14500179
Google Scholar
[22]
Y. Zhou , Y. L. Yang, Y. T. Fan, et al. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure[J]. Journal of Materials Chemistry C, 2019, 7: 8070-8078.
DOI: 10.1039/c9tc02504a
Google Scholar
[23]
Y. Xia, F. Huang, W. Wang, et al. A novel red-emitting Mn-activated BaZnOS phosphor[J]. Optical Materials, 2009, 31(2):311-314.
DOI: 10.1016/j.optmat.2008.04.014
Google Scholar
[24]
J. Kim, M. Young, et al. Frequency response analysis of mechanoluminescence in ZnS:Cu for non-contact torque sensors[J]. Sensors and Actuators, A. Physical, 2016,240:23-30.
DOI: 10.1016/j.sna.2016.01.039
Google Scholar
[25]
H. Matsui, C. N. Xu, H. Tateyama. Stress-stimulated luminescence from ZnAl2O4:Mn[J]. Applied Physics Letters, 2001,78(8):1068-1070.
DOI: 10.1063/1.1350429
Google Scholar
[26]
S. S. Pitale, V. Kumar, I. M. Nagpure, et al. Luminescence characterization and electron beam induced chemical changes on the surface of ZnAl2O4:Mn nanocrystalline phosphor[J]. Applied Surface Science, 2011, 257(8):3298-3306.
DOI: 10.1016/j.apsusc.2010.11.006
Google Scholar
[27]
H. Chen, L. Wu, T. Sun , et al. Intense green elastico-mechanoluminescence from KZn(PO3)3:Tb 3+[J]. Applied Physics Letters, 2020, 116(5):051904.
DOI: 10.1063/1.5134712
Google Scholar
[28]
M. Akiyama, C. N. Xu, H. Matsui, et al. Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light[J]. Applied Physics Letters, 1999, 75(17):2548-2550.
DOI: 10.1063/1.125073
Google Scholar
[29]
H. Zhang, N. Terasaki , H. Yamada, et al. Development of mechanoluminescent micro-particles Ca2MgSi2O7:Eu,Dy and their application in sensors[J]. Thin Solid Films, 2009, 518(2):610-613.
DOI: 10.1016/j.tsf.2009.07.124
Google Scholar
[30]
I. P. Sahu, D. P. Bisen, N. Brahme. Luminescence Properties of Eu2+, Dy3+ Doped Sr2MgSi2O7 and Ca2MgSi2O7 Phosphors by Solid State Reaction Method[J]. Research on Chemical Intermediates, 2014, 41(9):1-16.
DOI: 10.1007/s11164-014-1767-6
Google Scholar
[31]
H. Zhang, C.N. Xu, N. Terasaki, et al. Electro-Mechano-Optical Luminescence from CaYAl3O7:Ce[J]. Electrochemical and Solid-State Letters, 2011, 14(11):J76.
DOI: 10.1149/2.012111esl
Google Scholar
[32]
S. Tigga, N. Brahme, D. P. Bisen . Effect of gamma irradiation on thermoluminescence and fracto-mechanoluminescence properties of SrMgAl10O17 :Eu 2+ phosphor[J]. Optical Materials, 2016, 53(Mar.):109-115.
DOI: 10.1016/j.optmat.2016.01.028
Google Scholar
[33]
A. K. Choubey, N. Brahme, D.P. Bisen. Synthesis of SrAl2O4:Eu phosphor by combustion method and its possible applications for mechanoluminescence dosimetry[J]. Indian Journal of Pure and Applied Physics, 2012, 50(11):851.
DOI: 10.1016/j.phpro.2012.03.699
Google Scholar
[34]
G. Qiu , H. Fang, X. Wang, et al. Largely enhanced mechanoluminescence properties in Pr 3+ /Gd 3+ co-doped LiNbO 3 phosphors[J]. Ceramics International, 2018:S0272884218313427.
DOI: 10.1016/j.ceramint.2018.05.193
Google Scholar
[35]
H. Zhao, X. Chai, X. Wang, et al. Mechanoluminescence in (Sr,Ca,Ba)2SnO4 :Sm3+, La3+ ceramics[J]. Journal of Alloys and Compounds, 2016, 656:94-97.
DOI: 10.1016/j.jallcom.2015.09.218
Google Scholar
[36]
T. U. Dong , C. N. Xu, R. Hamabe, et al. Mechanoluminescence enhancement of the layered-structure compound Sr3Sn2O7:Sm3+ by H3BO3 addition[J]. Journal Ceramic Society Japan, 2017, 125(11):811-813.
Google Scholar
[37]
J. Botterman, K. Eeckhout, I. D. Baere, et al. Mechanoluminescence in BaSi2O2N2:Eu[J]. Acta Materialia, 2012, 60( 15):5494-5500.
DOI: 10.1016/j.actamat.2012.06.055
Google Scholar
[38]
L. Zhang, C. N. Xu, H. Yamada. Strong Mechanoluminescence from Oxynitridosilicate Phosphors[J]. IOP Conference Series: Materials Science and Engineering, 2011,18(21):212001.
DOI: 10.1088/1757-899x/18/21/212001
Google Scholar
[39]
W. W. Zhang, C. F. Qin, J. L. Shi, et al. High sensitive stress response of SrSiAlN3:Eu2+ epoxy resin composite with broadband luminescence [C] 2018 National Conference on Solid Mechanics. (2018).
Google Scholar
[40]
C. F. Qin, W. Zhang, J. Shi, et al. Fluorescence compressive stress sensing with SrSiAlN3:Eu2+ /resin composites [J].Chinese journal of sensors and actuators, 2019,32(01):57-61.
Google Scholar
[41]
H. Yamada, X. Y. Fu, C. N. Xu. Enhancement of adhesion and triboluminescent properties of SrAl2O4 :Eu2 + films fabricated by RF magnetron sputtering and postannealing techniques [J]. J. Electrochem. Soc., 2007, 154(11): J348.
DOI: 10.1149/1.2772194
Google Scholar
[42]
J. C. Zhang, X. S. Wand, G. Marriott, et al. Trap-controlled mechano-luminescent materials [J]. Prog. Mater. Sci., 2019, 103: 678-742.
Google Scholar
[43]
K. Chang, Q. Q. Li, Z. Li, et al. Advances in Mechanoluminescence and Its Applications [J]. Chinese Journal of Organic Chemistry, 2020, 40(11):17.
Google Scholar
[44]
Z. Monette, A. K. Kasar, & P. L. Menezes, Advances in triboluminescence and mechano luminescence [J]. Journal of Materials Science: Materials in Electronics. 2019, 30, 19675–19690.
DOI: 10.1007/s10854-019-02369-8
Google Scholar
[45]
B.P. Chandra. Mechano-luminescent and its applications [J]. International Journal of Luminescence and Applications (Special Issue:II),2012, 2(12): 1-29.
Google Scholar
[46]
A. Lazarowska, S. Mahlik, M. Grinberg, et al. Pressure dependence of the Sr2Si5N8:Eu2+ luminescence [J]. Journal of Luminescence,2015,159:183-187.
DOI: 10.1016/j.jlumin.2014.11.026
Google Scholar
[47]
A. Baran, S. Mahlik, M. Grinberg, et al. Luminescence properties of different Eu sites in LiMgPO4:Eu2+, Eu3+[J]. Journal of physics-condensed matter, 2014, 26(38): 385401.
DOI: 10.1088/0953-8984/26/38/385401
Google Scholar
[48]
A. Lazarowska, S. Mahlik, M. Grinberg, et al. Spectroscopic properties and energy level location of Eu2+ in Sr2Si5N8 phosphor[J]. Optical Materials, 2014, 37: 734-739.
DOI: 10.1016/j.optmat.2014.09.002
Google Scholar
[49]
J. Botterman, K. Eeckhout, I. D. Baere, et al. Mechanoluminescence in BaSi2O2N2: Eu[J]. Acta Materialia, 2012, 60(15): 5494-5500.
DOI: 10.1016/j.actamat.2012.06.055
Google Scholar
[50]
Y. Bai, F. Wang, L. Zhang , et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds[J]. Nano Energy, 2022, 96: 107075.
DOI: 10.1016/j.nanoen.2022.107075
Google Scholar
[51]
Y. Zhao , C . MA, F. Huang , et al. Residual stress inspection by Eu3+ photoluminescence piezo-spectroscopy: An application in thermal barrier coatings[J]. Journal of Applied Physics, 2013, 114(7):1491-332.
DOI: 10.1063/1.4818500
Google Scholar
[52]
S. Zhao , Z. Ren , Y. Zhao, et al. The application of Eu3+ photoluminescence piezo-spectroscopy in the LaMgAl11O19/8YSZ:Eu double-ceramic-layer coating system[J]. Journal of the European Ceramic Society, 2015, 35(1), 249-251.
DOI: 10.1016/j.jeurceramsoc.2014.07.029
Google Scholar
[53]
X. Wang, R. T. Wu , A. Atkinson. Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J]. Surface & Coatings Technology, 2010, 204(15):2472-2482.
DOI: 10.1016/j.surfcoat.2010.01.035
Google Scholar
[54]
J. I. Eldridge, T. J. Bencic. Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence[J]. Surface and Coatings Technology, 2006, 201( 7):3926-3930.
DOI: 10.1016/j.surfcoat.2006.08.008
Google Scholar
[55]
S. Zhao , L. Gu, Y. Zhao, L. Zhu, L. Gu, et al. A simple non-destructive method to indicate the spallation and damage degree of the double-ceramic-layer thermal barrier coating of La2(Zr0.7Ce0.3)2O7 and 8YSZ:Eu[J]. Journal of the European Ceramic Society, 2013,33 :2207-2213.
DOI: 10.1016/j.jeurceramsoc.2013.03.002
Google Scholar
[56]
S. Zhao, L. Gu , Y. Zhao, et al. Thermal cycling behavior and failure mechanism of La2(Zr0.7Ce0.3)2O7/Eu3+-doped 8YSZ thermal barrier coating prepared by atmospheric plasma spraying[J]. Journal of Alloys & Compounds, 2013, 580:101-107.
DOI: 10.1016/j.jallcom.2013.05.070
Google Scholar
[57]
B. Cheng, Y. Wang, Q. Q. Chu, et al. High temperature stability and response mechanism of Y2O3:Eu3+ stress detection unit in La2Zr2O7 thermal barrier coating [J]. The Chinese Journal of Nonferrous Metals, 2021,42566.
Google Scholar
[58]
W. G. Mao , Q. Chen, C. Y. Dai , et al. Effects of piezo-spectroscopic coefficients of 8 wt.% Y2O3 stabilized ZrO2 on residual stress measurement of thermal barrier coatings by Raman spectroscopy[J]. Surface & Coatings Technology, 2010, 204(21):3573-3577.
DOI: 10.1016/j.surfcoat.2010.04.024
Google Scholar
[59]
C. Li, C. N. Xu , Y. Adachi , et al. Real-time detection of axial force for reliable tightening control[J]. Proc Spie, 2010, 7522: 75223G.
Google Scholar
[60]
J. S. Kim , G. W. Kim. New non-contacting torque sensor based on the mechanoluminescence of ZnS:Cu microparticles[J]. Sensors & Actuators A Physical, 2014, 218:125-131.
DOI: 10.1016/j.sna.2014.07.023
Google Scholar
[61]
Y. Zhao, J. Y. Xu, S. M. Zhao, et al. Investigation of stress detection method of YSZ:Eu photoluminescence piezo-spectroscopy in tensile stress condition [J]. Journal of the Chinese society of rare earths, 2014, 32(3):7.
Google Scholar
[62]
B. Tian, Z. Wang, A.T. Smith, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing[J]. Nano Energy, 2021, 83:105860.
DOI: 10.1016/j.nanoen.2021.105860
Google Scholar
[63]
N. Terasaki , C. N. Xu . Historical-Log Recording System for Crack Opening and Growth Based on Mechanoluminescent Flexible Sensor[J]. IEEE Sensors Journal, 2013, 13(10):3999-4004.
DOI: 10.1109/jsen.2013.2264665
Google Scholar
[64]
C. Wu, S. Zeng, Z. Wang, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility[J]. Advanced Functional Materials, 2018, 28:1803168.
DOI: 10.1002/adfm.201803168
Google Scholar
[65]
Z. Ma, J. Zhou, J. Zhang, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Materials Horizons, 2019, 6(10): 2003-2008.
DOI: 10.1039/c9mh01028a
Google Scholar
[66]
X. Wang, H. Zhang, R. Yu, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Advanced Materials, 2015, 27(14):2324-2331.
DOI: 10.1002/adma.201405826
Google Scholar
[67]
Y. Jiang, F. Wang, H. Zhou, et al. Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth[J]. Materials Science & Engineering C, 2018, 92: 374-380.
DOI: 10.1016/j.msec.2018.06.056
Google Scholar
[68]
Y. Han, Y. Bai, J. Bian, et al. Polydimethylsiloxane-based mechanoluminescent occlusal splint with the visualization of occlusal force[J]. ACS Applied Polymer Materials, 2021, 3(10): 5180-5187.
DOI: 10.1021/acsapm.1c00917
Google Scholar