Research of Stress Detection Based on Mechanoluminescence

Article Preview

Abstract:

Stress and stress concentration are one of the main factors of invalidating load-bearing structural members. Stress detection becomes an important part of industrial production. Mechanoluminescent (ML), which is produced by mechanical stimulation acting on materials, has been suggested to use in stress detection. This work focuses on the development and mechanism of ML, concludes with the applications of ML on the stress measurement, and discusses the specific challenges to the future directions of ML.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-151

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Yang. Macroscopic-microcosmic fracture mechanics [M]. National defense industry press, Beeijing, (1995).

Google Scholar

[2] C. H. Zeng, S. J. Zou. Fatigue analysis method and Application [M]. National defense industry press, Beeijing, (1991).

Google Scholar

[3] F. C. Campbell. Elements of metallurgy and engineering alloys[M]. Materials Park,OH: ASM International, (2008).

Google Scholar

[4] B. Hu. The Present Condition and the Developing Trend of the Stress Testing Methods [J]. China special equipment safety, 2015, 31(12):9.

Google Scholar

[5] F. Bacon. The Advancement of Learning [M]. New York: Da Capo Press, 1605.

Google Scholar

[6] B. P. Chandra, A. K. K.Shrivastava. Dependence of mechanoluminescence in Rochelle-salt crystals on the charge-produced during their fracture [J]. J. Phys. Chem. Solids. 1978, 39(9): 939-940.

DOI: 10.1016/0022-3697(78)90107-5

Google Scholar

[7] N. Terasaki, C. N Xu. . Mechanoluminescence Recording Device Integrated with Photosensitive Material and Europium-Doped SrAl2O4[J]. Japanese Journal of Applied Physics, 2009, 48:04C150.

DOI: 10.1143/jjap.48.04c150

Google Scholar

[8] C. Pan, J. C. Zhang , M. Zhang, et al. Trap-controlled mechanoluminescence in Pr 3+ -activated M2Nb2O7(M = Sr, Ca) isomorphic perovskites[J]. Optical Materials Express, 2018, 8(6):1425.

DOI: 10.1364/ome.8.001425

Google Scholar

[9] C. Li, C. N. Xu, L. Zhang, H. Yamada, Y. Imai. Dynamic visualization of stress distribution on metal by mechanoluminescence images. J Visualizat 2008;11:329–35.

DOI: 10.1007/bf03182201

Google Scholar

[10] C. N. Xu, X. G. Zheng, M. Akiyama, et al. Dynamic visualization of stress distribution by mechanoluminescence image[J]. Applied Physics Letters, 2000, 76(2):179-181.

DOI: 10.1063/1.125695

Google Scholar

[11] A. J.Walton. Triboluminescence [J]. Adv. Phys., 1977, 26(6): 887 948.

Google Scholar

[12] W. Li , Q. Huang, M. Zhu , et al. Alkyl Chain Introduction: InSitu Solar‐Renewable Colorful Organic Mechanoluminescence Materials[J]. Angewandte Chemie International Edition, 2018, 57(39):12727-12732.

DOI: 10.1002/anie.201806861

Google Scholar

[13] J. C. Zhang, L. Z. Zhao, Y. Z. Long, et al. Color manipulation of intense multiluminescence from CaZnOS:Mn2+ by Mn2+ concentration effect[J]. Chemistry of Materials, 2015, 27(21): 7481-7489.

DOI: 10.1021/acs.chemmater.5b03570

Google Scholar

[14] C. N.Xu, T. Watanabe, M. Akiyama, et al. . Artificial skin to sense mechanical stress by visible light emission [J]. Appl. Phys. Lett. , 1999, 74( 9) : 1236-1238.

DOI: 10.1063/1.123510

Google Scholar

[15] C. N. Xu, T. Watanabe, M. Akiyama, et al. . Direct view of stress distribution in solid by mechanoluminescence [J]. Appl. Phys. Lett. , 1999, 74( 17) : 2414-2416.

DOI: 10.1063/1.123865

Google Scholar

[16] C. N. Xu, X. G. Zheng, Y.Watanabe, M.Akiyama, I.Usui. Enhancement of adhesion and triboluminescence of ZnS:Mn films by annealing technique[J]. Thin Solid Films, 1999, 352(1-2):273-277.

DOI: 10.1016/s0040-6090(99)00327-2

Google Scholar

[17] L. J. Li. Explorational study on novel mechanoluminescencent materials[D]. South China University of technology.

Google Scholar

[18] D. Tu, C. N. Xu , Y. Fujio, et al. Phosphorescence quenching by mechanical stimulus in CaZnOS:Cu[J]. Applied Physics Letters, 2014, 105(1):011908.

DOI: 10.1063/1.4890112

Google Scholar

[19] D. Tu, C. N. Xu, Y. Fujio, et al. Mechanism of mechanical quenching and mechanoluminescence in phosphorescent CaZnOS:Cu[J]. light:Science & Applications, 2015, 4(1):7.

Google Scholar

[20] B. Huang, D. Peng, C. Pan . Energy Relay Center, for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS[J]. Physical Chemistry Chemical Physics, 2016, 19(2):1190-1208.

DOI: 10.1039/c6cp07472c

Google Scholar

[21] Y. Fujio, C. N. Xu, D. Tu, et al. Intense red emitting mechanoluminescence from CaZnOS:Mn,Li with c-axis preferred orientation[J]. Journal of Advanced Dielectrics, 2014, 4(3):1450017.

DOI: 10.1142/s2010135x14500179

Google Scholar

[22] Y. Zhou , Y. L. Yang, Y. T. Fan, et al. Intense red photoluminescence and mechanoluminescence from Mn2+-activated SrZnSO with a layered structure[J]. Journal of Materials Chemistry C, 2019, 7: 8070-8078.

DOI: 10.1039/c9tc02504a

Google Scholar

[23] Y. Xia, F. Huang, W. Wang, et al. A novel red-emitting Mn-activated BaZnOS phosphor[J]. Optical Materials, 2009, 31(2):311-314.

DOI: 10.1016/j.optmat.2008.04.014

Google Scholar

[24] J. Kim, M. Young, et al. Frequency response analysis of mechanoluminescence in ZnS:Cu for non-contact torque sensors[J]. Sensors and Actuators, A. Physical, 2016,240:23-30.

DOI: 10.1016/j.sna.2016.01.039

Google Scholar

[25] H. Matsui, C. N. Xu, H. Tateyama. Stress-stimulated luminescence from ZnAl2O4:Mn[J]. Applied Physics Letters, 2001,78(8):1068-1070.

DOI: 10.1063/1.1350429

Google Scholar

[26] S. S. Pitale, V. Kumar, I. M. Nagpure, et al. Luminescence characterization and electron beam induced chemical changes on the surface of ZnAl2O4:Mn nanocrystalline phosphor[J]. Applied Surface Science, 2011, 257(8):3298-3306.

DOI: 10.1016/j.apsusc.2010.11.006

Google Scholar

[27] H. Chen, L. Wu, T. Sun , et al. Intense green elastico-mechanoluminescence from KZn(PO3)3:Tb 3+[J]. Applied Physics Letters, 2020, 116(5):051904.

DOI: 10.1063/1.5134712

Google Scholar

[28] M. Akiyama, C. N. Xu, H. Matsui, et al. Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light[J]. Applied Physics Letters, 1999, 75(17):2548-2550.

DOI: 10.1063/1.125073

Google Scholar

[29] H. Zhang, N. Terasaki , H. Yamada, et al. Development of mechanoluminescent micro-particles Ca2MgSi2O7:Eu,Dy and their application in sensors[J]. Thin Solid Films, 2009, 518(2):610-613.

DOI: 10.1016/j.tsf.2009.07.124

Google Scholar

[30] I. P. Sahu, D. P. Bisen, N. Brahme. Luminescence Properties of Eu2+, Dy3+ Doped Sr2MgSi2O7 and Ca2MgSi2O7 Phosphors by Solid State Reaction Method[J]. Research on Chemical Intermediates, 2014, 41(9):1-16.

DOI: 10.1007/s11164-014-1767-6

Google Scholar

[31] H. Zhang, C.N. Xu, N. Terasaki, et al. Electro-Mechano-Optical Luminescence from CaYAl3O7:Ce[J]. Electrochemical and Solid-State Letters, 2011, 14(11):J76.

DOI: 10.1149/2.012111esl

Google Scholar

[32] S. Tigga, N. Brahme, D. P. Bisen . Effect of gamma irradiation on thermoluminescence and fracto-mechanoluminescence properties of SrMgAl10O17 :Eu 2+ phosphor[J]. Optical Materials, 2016, 53(Mar.):109-115.

DOI: 10.1016/j.optmat.2016.01.028

Google Scholar

[33] A. K. Choubey, N. Brahme, D.P. Bisen. Synthesis of SrAl2O4:Eu phosphor by combustion method and its possible applications for mechanoluminescence dosimetry[J]. Indian Journal of Pure and Applied Physics, 2012, 50(11):851.

DOI: 10.1016/j.phpro.2012.03.699

Google Scholar

[34] G. Qiu , H. Fang, X. Wang, et al. Largely enhanced mechanoluminescence properties in Pr 3+ /Gd 3+ co-doped LiNbO 3 phosphors[J]. Ceramics International, 2018:S0272884218313427.

DOI: 10.1016/j.ceramint.2018.05.193

Google Scholar

[35] H. Zhao, X. Chai, X. Wang, et al. Mechanoluminescence in (Sr,Ca,Ba)2SnO4 :Sm3+, La3+ ceramics[J]. Journal of Alloys and Compounds, 2016, 656:94-97.

DOI: 10.1016/j.jallcom.2015.09.218

Google Scholar

[36] T. U. Dong , C. N. Xu, R. Hamabe, et al. Mechanoluminescence enhancement of the layered-structure compound Sr3Sn2O7:Sm3+ by H3BO3 addition[J]. Journal Ceramic Society Japan, 2017, 125(11):811-813.

Google Scholar

[37] J. Botterman, K. Eeckhout, I. D. Baere, et al. Mechanoluminescence in BaSi2O2N2:Eu[J]. Acta Materialia, 2012, 60( 15):5494-5500.

DOI: 10.1016/j.actamat.2012.06.055

Google Scholar

[38] L. Zhang, C. N. Xu, H. Yamada. Strong Mechanoluminescence from Oxynitridosilicate Phosphors[J]. IOP Conference Series: Materials Science and Engineering, 2011,18(21):212001.

DOI: 10.1088/1757-899x/18/21/212001

Google Scholar

[39] W. W. Zhang, C. F. Qin, J. L. Shi, et al. High sensitive stress response of SrSiAlN3:Eu2+ epoxy resin composite with broadband luminescence [C] 2018 National Conference on Solid Mechanics. (2018).

Google Scholar

[40] C. F. Qin, W. Zhang, J. Shi, et al. Fluorescence compressive stress sensing with SrSiAlN3:Eu2+ /resin composites [J].Chinese journal of sensors and actuators, 2019,32(01):57-61.

Google Scholar

[41] H. Yamada, X. Y. Fu, C. N. Xu. Enhancement of adhesion and triboluminescent properties of SrAl2O4 :Eu2 + films fabricated by RF magnetron sputtering and postannealing techniques [J]. J. Electrochem. Soc., 2007, 154(11): J348.

DOI: 10.1149/1.2772194

Google Scholar

[42] J. C. Zhang, X. S. Wand, G. Marriott, et al. Trap-controlled mechano-luminescent materials [J]. Prog. Mater. Sci., 2019, 103: 678-742.

Google Scholar

[43] K. Chang, Q. Q. Li, Z. Li, et al. Advances in Mechanoluminescence and Its Applications [J]. Chinese Journal of Organic Chemistry, 2020, 40(11):17.

Google Scholar

[44] Z. Monette, A. K. Kasar, & P. L. Menezes, Advances in triboluminescence and mechano luminescence [J]. Journal of Materials Science: Materials in Electronics. 2019, 30, 19675–19690.

DOI: 10.1007/s10854-019-02369-8

Google Scholar

[45] B.P. Chandra. Mechano-luminescent and its applications [J]. International Journal of Luminescence and Applications (Special Issue:II),2012, 2(12): 1-29.

Google Scholar

[46] A. Lazarowska, S. Mahlik, M. Grinberg, et al. Pressure dependence of the Sr2Si5N8:Eu2+ luminescence [J]. Journal of Luminescence,2015,159:183-187.

DOI: 10.1016/j.jlumin.2014.11.026

Google Scholar

[47] A. Baran, S. Mahlik, M. Grinberg, et al. Luminescence properties of different Eu sites in LiMgPO4:Eu2+, Eu3+[J]. Journal of physics-condensed matter, 2014, 26(38): 385401.

DOI: 10.1088/0953-8984/26/38/385401

Google Scholar

[48] A. Lazarowska, S. Mahlik, M. Grinberg, et al. Spectroscopic properties and energy level location of Eu2+ in Sr2Si5N8 phosphor[J]. Optical Materials, 2014, 37: 734-739.

DOI: 10.1016/j.optmat.2014.09.002

Google Scholar

[49] J. Botterman, K. Eeckhout, I. D. Baere, et al. Mechanoluminescence in BaSi2O2N2: Eu[J]. Acta Materialia, 2012, 60(15): 5494-5500.

DOI: 10.1016/j.actamat.2012.06.055

Google Scholar

[50] Y. Bai, F. Wang, L. Zhang , et al. Interfacial triboelectrification-modulated self-recoverable and thermally stable mechanoluminescence in mixed-anion compounds[J]. Nano Energy, 2022, 96: 107075.

DOI: 10.1016/j.nanoen.2022.107075

Google Scholar

[51] Y. Zhao , C . MA, F. Huang , et al. Residual stress inspection by Eu3+ photoluminescence piezo-spectroscopy: An application in thermal barrier coatings[J]. Journal of Applied Physics, 2013, 114(7):1491-332.

DOI: 10.1063/1.4818500

Google Scholar

[52] S. Zhao , Z. Ren , Y. Zhao, et al. The application of Eu3+ photoluminescence piezo-spectroscopy in the LaMgAl11O19/8YSZ:Eu double-ceramic-layer coating system[J]. Journal of the European Ceramic Society, 2015, 35(1), 249-251.

DOI: 10.1016/j.jeurceramsoc.2014.07.029

Google Scholar

[53] X. Wang, R. T. Wu , A. Atkinson. Characterisation of residual stress and interface degradation in TBCs by photo-luminescence piezo-spectroscopy[J]. Surface & Coatings Technology, 2010, 204(15):2472-2482.

DOI: 10.1016/j.surfcoat.2010.01.035

Google Scholar

[54] J. I. Eldridge, T. J. Bencic. Monitoring delamination of plasma-sprayed thermal barrier coatings by reflectance-enhanced luminescence[J]. Surface and Coatings Technology, 2006, 201( 7):3926-3930.

DOI: 10.1016/j.surfcoat.2006.08.008

Google Scholar

[55] S. Zhao , L. Gu, Y. Zhao, L. Zhu, L. Gu, et al. A simple non-destructive method to indicate the spallation and damage degree of the double-ceramic-layer thermal barrier coating of La2(Zr0.7Ce0.3)2O7 and 8YSZ:Eu[J]. Journal of the European Ceramic Society, 2013,33 :2207-2213.

DOI: 10.1016/j.jeurceramsoc.2013.03.002

Google Scholar

[56] S. Zhao, L. Gu , Y. Zhao, et al. Thermal cycling behavior and failure mechanism of La2(Zr0.7Ce0.3)2O7/Eu3+-doped 8YSZ thermal barrier coating prepared by atmospheric plasma spraying[J]. Journal of Alloys & Compounds, 2013, 580:101-107.

DOI: 10.1016/j.jallcom.2013.05.070

Google Scholar

[57] B. Cheng, Y. Wang, Q. Q. Chu, et al. High temperature stability and response mechanism of Y2O3:Eu3+ stress detection unit in La2Zr2O7 thermal barrier coating [J]. The Chinese Journal of Nonferrous Metals, 2021,42566.

Google Scholar

[58] W. G. Mao , Q. Chen, C. Y. Dai , et al. Effects of piezo-spectroscopic coefficients of 8 wt.% Y2O3 stabilized ZrO2 on residual stress measurement of thermal barrier coatings by Raman spectroscopy[J]. Surface & Coatings Technology, 2010, 204(21):3573-3577.

DOI: 10.1016/j.surfcoat.2010.04.024

Google Scholar

[59] C. Li, C. N. Xu , Y. Adachi , et al. Real-time detection of axial force for reliable tightening control[J]. Proc Spie, 2010, 7522: 75223G.

Google Scholar

[60] J. S. Kim , G. W. Kim. New non-contacting torque sensor based on the mechanoluminescence of ZnS:Cu microparticles[J]. Sensors & Actuators A Physical, 2014, 218:125-131.

DOI: 10.1016/j.sna.2014.07.023

Google Scholar

[61] Y. Zhao, J. Y. Xu, S. M. Zhao, et al. Investigation of stress detection method of YSZ:Eu photoluminescence piezo-spectroscopy in tensile stress condition [J]. Journal of the Chinese society of rare earths, 2014, 32(3):7.

Google Scholar

[62] B. Tian, Z. Wang, A.T. Smith, et al. Stress-induced color manipulation of mechanoluminescent elastomer for visualized mechanics sensing[J]. Nano Energy, 2021, 83:105860.

DOI: 10.1016/j.nanoen.2021.105860

Google Scholar

[63] N. Terasaki , C. N. Xu . Historical-Log Recording System for Crack Opening and Growth Based on Mechanoluminescent Flexible Sensor[J]. IEEE Sensors Journal, 2013, 13(10):3999-4004.

DOI: 10.1109/jsen.2013.2264665

Google Scholar

[64] C. Wu, S. Zeng, Z. Wang, et al. Efficient mechanoluminescent elastomers for dual-responsive anticounterfeiting device and stretching/strain sensor with multimode sensibility[J]. Advanced Functional Materials, 2018, 28:1803168.

DOI: 10.1002/adfm.201803168

Google Scholar

[65] Z. Ma, J. Zhou, J. Zhang, et al. Mechanics-induced triple-mode anticounterfeiting and moving tactile sensing by simultaneously utilizing instantaneous and persistent mechanoluminescence[J]. Materials Horizons, 2019, 6(10): 2003-2008.

DOI: 10.1039/c9mh01028a

Google Scholar

[66] X. Wang, H. Zhang, R. Yu, et al. Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Advanced Materials, 2015, 27(14):2324-2331.

DOI: 10.1002/adma.201405826

Google Scholar

[67] Y. Jiang, F. Wang, H. Zhou, et al. Optimization of strontium aluminate-based mechanoluminescence materials for occlusal examination of artificial tooth[J]. Materials Science & Engineering C, 2018, 92: 374-380.

DOI: 10.1016/j.msec.2018.06.056

Google Scholar

[68] Y. Han, Y. Bai, J. Bian, et al. Polydimethylsiloxane-based mechanoluminescent occlusal splint with the visualization of occlusal force[J]. ACS Applied Polymer Materials, 2021, 3(10): 5180-5187.

DOI: 10.1021/acsapm.1c00917

Google Scholar