Kalman Filter for Artifact Reduction in MRI Imaging: A Literature Review

Article Preview

Abstract:

Background: The appearance of Noise Artifacts is admittedly very disturbing the quality of MRI diagnostic images. The application of BLADE and STIR sequences based on artificial intelligence technology has described in reference that it is able to suppress moving signals from the vascular and signals from fat tissue. However, the long consumption of scanning time is one of the drawbacks that arise, and subsequently affect the presence of noise in the image. The use of another technique, namely kallman filter with the Matlab (Matrix Laboratory) program, which is applied as part of post-scanning image processing will help reduce image noise values ​​that arise due to the problem of long scanning time consumption in both sequences. The aim of this literature review is to determine the potential of the filter kalman for the reduction of artifacts on MRI examinations. Methods: The search was conducted using google scholar, WILEY, IEE Explore, SPRINGER, Scopus and PERPUSNAS in English with the article period 2004-2020 using the keywords MRI artifacts, reducing artifacts and the Kalman filter algorithm. Result: The results of a review of 4 articles of kalman filter intervention on MRI Brain, MRI Abdomen and MR Cardiac showed that kalman filter was good enough in reducing artifacts and increasing anatomical information. Conclusion: Kalman filter has the potential to reduce artifacts, improve image quality and clarify anatomical images on MRI examinations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-88

Citation:

Online since:

March 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Somasundaram and P. Kalavathi, Analysis of Imaging Artifacts in MR Brain Images,, Orient. J. Comput. Sci. …, vol. 5 N0 1, p.135–141, 2012, [Online]. Available: http://computerscijournal.org/dnload/Somasundaram-K-and-Kalavathi-P-/OJCSV05I01P135-141.pdf.

Google Scholar

[2] N. Mahmood, A. Shah, A. Waqas, A. Abubakar, S. Kamran, and S. B. Zaidi, Image segmentation methods and edge detection: An application to knee joint articular cartilage edge detection,, J. Theor. Appl. Inf. Technol., vol. 71, no. 1, p.87–96, (2015).

Google Scholar

[3] M. Zaitsev, J. Maclaren, and M. Herbst, Motion artifacts in MRI: A complex problem with many partial solutions,, J. Magn. Reson. Imaging, vol. 42, no. 4, p.887–901, 2015,.

DOI: 10.1002/jmri.24850

Google Scholar

[4] R. L. Ehman and J. P. Felmlee, Flow artifact reduction in MRI: A review of the roles of gradient moment nulling and spatial presaturation,, Magn. Reson. Med., vol. 14, no. 2, p.293–307, 1990,.

DOI: 10.1002/mrm.1910140214

Google Scholar

[5] J. Zhuo and R. P. Gullapalli, MR Artifacts, Safety, and Quality Control,, RadioGraphics, vol. 26, no. 1, p.275–297, 2006,.

DOI: 10.1148/rg.261055134

Google Scholar

[6] R. Kijowski and G. E. Gold, Routine 3D magnetic resonance imaging of joints,, J. Magn. Reson. Imaging, vol. 33, no. 4, p.758–771, 2011,.

DOI: 10.1002/jmri.22342

Google Scholar

[7] R. B. Frobell, H. P. Roos, E. M. Roos, F. W. Roemer, J. Ranstam, and L. S. Lohmander, Treatment for acute anterior cruciate ligament tear: Five year outcome of randomised trial,, BMJ, vol. 346, no. 7895, p.1–12, 2013,.

DOI: 10.1136/bmj.f232

Google Scholar

[8] R. Golfieri, H. Baddeley, J. S. Pringle, and R. Souhami, The role of the STIR sequence in magnetic resonance imaging examination of bone tumours,, Br. J. Radiol., vol. 63, no. 748, p.251–256, 1990,.

DOI: 10.1259/0007-1285-63-748-251

Google Scholar

[9] M. J. Sampson, M. P. Jackson, C. J. Moran, R. Moran, S. J. Eustace, and S. Shine, Three Tesla MRI for the diagnosis of meniscal and anterior cruciate ligament pathology: a comparison to arthroscopic findings,, Clin. Radiol., vol. 63, no. 10, p.1106–1111, 2008,.

DOI: 10.1016/j.crad.2008.04.008

Google Scholar

[10] S. Särkka and A. Solin, Filtering of Physiological Noise: DRIFTER,, vol. 60, no. 2, p.1517–1527, 2012,.

Google Scholar

[11] K. S.Tamilselvan, G. Murugesan, and M. Vinothsaravanan, A Histogram based Hybrid Approach for Medical Image Denoising using Wavelet and Curvelet Transforms,, Int. J. Comput. Appl., vol. 74, no. 21, p.6–11, 2013,.

DOI: 10.5120/13040-0053

Google Scholar

[12] M. Athans, Kalman filtering,, Control Syst. Handb. Control Syst. Adv. Methods, Second Ed., no. June, p.295–306, 2010,.

Google Scholar

[13] X. Feng, M. Salerno, C. M. Kramer, and C. H. Meyer, Kalman filter techniques for accelerated Cartesian dynamic cardiac imaging,, Magn. Reson. Med., vol. 69, no. 5, p.1346–1356, 2013,.

DOI: 10.1002/mrm.24375

Google Scholar

[14] D. W. Kim, C. Kim, D. H. Kim, and D. H. Lim, Rician nonlocal means denoising for MR images using nonparametric principal component analysis,, EURASIP J. Image Video Process., vol. 2011, no. 1, p.1–8, 2011,.

DOI: 10.1186/1687-5281-2011-15

Google Scholar

[15] J. Shin, S. Ahn, and X. Hu, Correction for the T1 effect incorporating flip angle estimated by Kalman filter in cardiac-gated functional MRI,, Magn. Reson. Med., vol. 70, no. 6, p.1626–1633, 2013,.

DOI: 10.1002/mrm.24620

Google Scholar

[16] S. Sharifzadeh Javidi and H. Saligheh Rad, Using Kalman Filter to Improve the Accuracy of Diffusion Coefficients in MR Imaging: A Simulation Study,, Iran. J. Radiol., vol. 16, no. Special Issue, p.1–2, 2019,.

DOI: 10.5812/iranjradiol.99153

Google Scholar

[17] E. A. Moore, M. J. Graves, and M. R. Prince, From Picture to Proton,, (1997).

Google Scholar

[18] M. Gupta, H. Taneja, L. Chand, and V. Goyal, Enhancement and analysis in MRI image denoising for different filtering techniques,, J. Stat. Manag. Syst., vol. 21, no. 4, p.561–568, 2018,.

DOI: 10.1080/09720510.2018.1466964

Google Scholar

[19] Z. Q. Abdullah, Quality assessment on medical image denoising algorithm: diffusion and wavelet transform filters,, no. April, (2014).

Google Scholar

[20] F. Baselice, G. Ferraioli, and V. Pascazio, A 3D MRI denoising algorithm based on Bayesian theory,, Biomed. Eng. Online, vol. 16, no. 1, p.1–19, 2017,.

DOI: 10.1186/s12938-017-0319-x

Google Scholar

[21] D. Hernando et al., Removal of olefinic fat chemical shift artifact in diffusion MRI,, Magn. Reson. Med., vol. 65, no. 3, p.692–701, 2011,.

DOI: 10.1002/mrm.22670

Google Scholar

[22] E. M. Bellon, E. M. Haacke, P. E. Coleman, D. A. Steiger, and E. Gangarosa, MR Artifacts :,, (1986).

Google Scholar

[23] Y. Wang, Y. Song, H. Xie, W. Li, B. Hu, and G. Yang, Reduction of Gibbs artifacts in magnetic resonance imaging based on Convolutional Neural Network,, Proc. - 2017 10th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2017, vol. 2018-January, no. October, p.1–5, 2018,.

DOI: 10.1109/cisp-bmei.2017.8302197

Google Scholar

[24] C. Zhao et al., HHS Public Access,, p.132–141, 2020,.

Google Scholar

[25] F. Shuaib, D. Kimbrough, M. Roofe, G. McGwin Jr, and P. Jolly, 基因的改变NIH Public Access,, Bone, vol. 23, no. 1, p.1–7, 2008,.

Google Scholar

[26] D. A. Steinman and B. K. Rutt, On the nature and reduction of plaque-mimicking flow artifacts in black blood MRI of the carotid bifurcation,, Magn. Reson. Med., vol. 39, no. 4, p.635–641, 1998,.

DOI: 10.1002/mrm.1910390417

Google Scholar

[27] J. Olsrud, J. Lätt, S. Brockstedt, B. Romner, and I. M. Björkman-Burtscher, Magnetic resonance imaging artifacts caused by aneurysm clips and shunt valves: Dependence on field strength (1.5 and 3 T) and imaging parameters,, J. Magn. Reson. Imaging, vol. 22, no. 3, p.433–437, 2005,.

DOI: 10.1002/jmri.20391

Google Scholar

[28] Y. Hirokawa, H. Isoda, Y. S. Maetani, S. Arizono, K. Shimada, and K. Togashi, MRI artifact reduction and quality improvement in the upper abdomen with PROPELLER and Prospective Acquisition Correction (PACE) technique,, Am. J. Roentgenol., vol. 191, no. 4, p.1154–1158, 2008,.

DOI: 10.2214/ajr.07.3657

Google Scholar

[29] D. Tamada, M. L. Kromrey, S. Ichikawa, H. Onishi, and U. Motosugi, Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced mr imaging of the liver,, Magn. Reson. Med. Sci., vol. 19, no. 1, p.64–76, 2020,.

DOI: 10.2463/mrms.mp.2018-0156

Google Scholar

[30] T. B. Smith and K. S. Nayak, MRI artifacts and correction strategies,, Imaging Med., vol. 2, no. 4, p.445–457, 2010,.

Google Scholar

[31] A. Yoshikawa et al., Heart Rate and Respiration Affect the Functional Connectivity of Default Mode Network in Resting-State Functional Magnetic Resonance Imaging,, Front. Neurosci., vol. 14, no. June, p.1–13, 2020,.

DOI: 10.3389/fnins.2020.00631

Google Scholar

[32] B. F. Lane, F. Q. Vandermeer, R. C. Oz, E. W. Irwin, A. B. McMillan, and J. J. Wong-You-Cheong, Comparison of sagittal T2-weighted BLADE and fast spin-echo MRI of the female pelvis for motion artifact and lesion detection,, Am. J. Roentgenol., vol. 197, no. 2, p.307–313, 2011,.

DOI: 10.2214/ajr.10.5918

Google Scholar

[33] K. Krupa and M. Bekiesińska-Figatowska, Artifacts in magnetic resonance imaging,, Polish J. Radiol., vol. 80, no. 1, p.93–106, 2015,.

DOI: 10.12659/pjr.892628

Google Scholar

[34] Y. Zhao et al., Localized Motion Artifact Reduction on Brain MRI Using Deep Learning with Effective Data Augmentation Techniques,, Proc. Int. Jt. Conf. Neural Networks, vol. 2021-July, 2021,.

DOI: 10.1109/ijcnn52387.2021.9534191

Google Scholar

[35] B. Chen, L. Zhang, H. Chen, K. Liang, and X. Chen, A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors,, Comput. Methods Programs Biomed., vol. 200, p.105797, 2021,.

DOI: 10.1016/j.cmpb.2020.105797

Google Scholar

[36] R. M. Chen, S. C. Yang, and C. M. Wang, MRI brain tissue classification using unsupervised optimized extenics-based methods,, Comput. Electr. Eng., vol. 58, p.489–501, 2017,.

DOI: 10.1016/j.compeleceng.2017.01.018

Google Scholar

[37] P. Spincemaille, T. D. Nguyen, M. R. Prince, and Y. Wang, Kalman filtering for real-time navigator processing,, Magn. Reson. Med., vol. 60, no. 1, p.158–168, 2008,.

DOI: 10.1002/mrm.21649

Google Scholar

[38] S. C. Yang et al., Contrast enhancement and tissues classification of breast MRI using Kalman filter-based linear mixing method,, Comput. Med. Imaging Graph., vol. 33, no. 3, p.187–196, 2009,.

DOI: 10.1016/j.compmedimag.2008.12.001

Google Scholar

[39] C. M. Wang, G. C. Lin, C. Y. Lin, and R. M. Chen, An unsupervised Kalman filter-based linear mixing approach to MRI classification,, IEEE Asia-Pacific Conf. Circuits Syst. Proceedings, APCCAS, vol. 2, p.1105–1108, 2004,.

DOI: 10.1109/apccas.2004.1413077

Google Scholar

[40] X. Li, Y. H. Lee, S. Mikaiel, J. Simonelli, T. C. Tsao, and H. H. Wu, Respiratory motion prediction using fusion-based multi-rate kalman filtering and real-time golden-angle radial mri,, IEEE Trans. Biomed. Eng., vol. 67, no. 6, p.1727–1738, 2020,.

DOI: 10.1109/tbme.2019.2944803

Google Scholar