[1]
H. Minghui. Laser-material interaction and its applications in surface Micro Nanoprocessing. AIP Conf. Proc., 12(78) (2010) 293–302.
DOI: 10.1063/1.3507115
Google Scholar
[2]
M. S. Hassan, Z. A. Taha, and B. G. Rasheed. Synthesis and Modeling of Temperature Distribution for Nanoparticles Produced Using Nd:YAG Lasers. J. Nanotechnol, 24(5) (2016) 1–8.
Google Scholar
[3]
L. Rihakova and H. Chmelickova. Laser micromachining of glass, silicon and ceramics. Eur. Int. J. Sci. Technol., 4(7) (2015) 41–49.
Google Scholar
[4]
U. Klotzbach, A. F. Lasagni, M. Panzner, and V. Franke. Fabrication and Characterization in the Micro-Nano Range. Adv. Struct. Mater, 10(2) (2011) 29–46.
DOI: 10.1007/978-3-642-17782-8_2
Google Scholar
[5]
R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, and F. Brandi. Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express, 2(5) (2012) 510–518.
DOI: 10.1364/ome.2.000510
Google Scholar
[6]
W. A. Ghaly and H. T. Mohsen. Laser-induced silicon nanocolumns by ablation technique. J. Radiat. Res. Appl. Sci., 13(1) (2020) 398–405.
DOI: 10.1080/16878507.2020.1740395
Google Scholar
[7]
C. Gaudiuso, A. Volpe, and A. Ancona. Single-pass direct laser cutting of quartz by IR femtosecond pulses. Proc. SPIE, 5(21) (2021) 1-10.
DOI: 10.1117/12.2577177
Google Scholar
[8]
T. D. Sherpa and B. B. Pradhan. Micro-grooving of silicon wafer by Nd:YAG laser beam machining. IOP Conf. Ser. Mater. Sci. Eng., 377(1) (2018) 1–7.
DOI: 10.1088/1757-899x/377/1/012219
Google Scholar
[9]
P. E. Z. Hou et al.. Cross-scale additive direct-writing fabrication of micro / nano lens arrays by electrohydrodynamic jet printing. Opt. Express, 28(5) (2020) 6336–6349.
DOI: 10.1364/oe.383863
Google Scholar
[10]
H. S. Mavi, B. G. Rasheed, A. K. Shukla, S. C. Abbi, and K. P. Jain. Photoluminescence study of Nd:YAG laser-etched silicon. J. Non. Cryst. Solids, 286(3) (2001) 162–168.
DOI: 10.1016/s0022-3093(01)00519-1
Google Scholar
[11]
H. Naser et al.. The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. J. Nanoparticle Res., 21(11) (2019) 1–28.
Google Scholar
[12]
L. Zhao, J. Cheng, Z. Yin, H. Yang, and Q. Liu. Rapid CO 2 laser processing technique for fabrication of micro-optics and micro-structures on fused silica materials. J Eng. Manuf., 235(12) (2020) 1–11.
Google Scholar
[13]
Z. Zhang, Z. Wang, and D. Wang. Micro-lens array fabricated by laser interference lithography. Int. Conf. Manip. Manuf. Meas. Nanoscale, 9(12) (2014) 78–81.
Google Scholar
[14]
W. R. Runyan, Silicon Semiconductor Technology, First ed,. New York: McGraw-Hill, 1965.
Google Scholar
[15]
P. Chewchinda, T. Tsuge, H. Funakubo, O. Odawara, and H. Wada. Laser wavelength effect on size and morphology of silicon nanoparticles prepared by laser ablation in liquid. Jpn. J. Appl. Phys., 52(2) (2013) 1–4.
DOI: 10.7567/jjap.52.025001
Google Scholar
[16]
L. A. J. Garvie, P. Rez, J. R. Alvarez, P. R. Buseck, A. J. Craven, and R. Brydson. Bonding in alpha-quartz (SiO2): A view of the unoccupied states. Am. Mineral., 85(6) (2000) 732–738.
DOI: 10.2138/am-2000-5-611
Google Scholar