[1]
M. Samtani, D. Dollimore, and K. S. Alexander, "Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters," Thermochim. Acta, vol. 392–393, p.135–145, 2002.
DOI: 10.1016/s0040-6031(02)00094-1
Google Scholar
[2]
R. M. McINTOSH, J. H. Sharp, and F. W. Wiburn, "The thermal decomposition of dolomite samples," Thermochim. Acta, vol. 165, p.281–296, 1990.
Google Scholar
[3]
S. Gunasekaran and G. Anbalangan, "Thermal decomposition of natural dolomite," Bull. Mater. Sci., vol. 30, no. 4, p.339–344, 2007.
DOI: 10.1134/S0020168511120156
Google Scholar
[4]
B. K. Shahraki, B. Mehrabi, R. Dabiri, and K. Blv, "THERMAL BEHAVIOR OF ZEFREH DOLOMITE MINE ( CENTERAL IRAN )," J. Min. Metal., vol. 45, no. 1, p.35–44, 2009.
DOI: 10.2298/JMMB0901035S
Google Scholar
[5]
M. Olszak-Humienik and M. Jablonski, "Thermal behavior of natural dolomite," J. Therm. Anal. Calorim., vol. 119, no. 3, p.2239–2248, 2015.
DOI: 10.1007/s10973-014-4301-6
Google Scholar
[6]
A. Royani, E. Sulistiyono, and D. Sufiandi, "Dekomposisi Dolomit," J. Sains Mater. Indones., vol. 18, no. 1, p.41–46, 2016.
DOI: 10.17146/jsmi.2016.18.1.4186
Google Scholar
[7]
Subagjo, W. Wulandari, P. M. Adinata, and A. Fajrin, "Thermal decomposition of dolomite under CO2-air atmosphere," AIP Conf. Proc., vol. 1805, no. January, 2017.
DOI: 10.1063/1.4974427
Google Scholar
[8]
I. Efthimiopoulos, S. Jahn, A. Kuras, U. Schade, and M. Koch-Müller, "Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification," Phys. Chem. Miner., vol. 44, no. 7, p.465–476, 2017.
DOI: 10.1007/s00269-017-0874-5
Google Scholar
[9]
O. Sivrikaya, "A study on the physicochemical and thermal characterisation of dolomite and limestone samples for use in ironmaking and steelmaking," Ironmak. Steelmak., vol. 45, no. 8, p.764–772, 2018.
DOI: 10.1080/03019233.2017.1337264
Google Scholar
[10]
C. Rodriguez-Navarro, K. Kudlacz, and E. Ruiz-Agudo, "The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses," Am. Mineral., vol. 97, no. 1, p.38–51, 2012.
DOI: 10.2138/am.2011.3813
Google Scholar
[11]
T. D. Humphries et al., "Dolomite: A low cost thermochemical energy storage material," J. Mater. Chem. A, vol. 7, no. 3, p.1206–1215, 2019.
DOI: 10.1039/c8ta07254j
Google Scholar
[12]
H. Hashimoto, E. Komaki, F. Hayashi, and T. Uematsu, "Partial decomposition of dolomite in CO2," J. Solid State Chem., vol. 33, no. 2, p.181–188, 1980.
DOI: 10.1016/0022-4596(80)90118-8
Google Scholar
[13]
H. Galai, M. Pijolat, K. Nahdi, and M. Trabelsi-Ayadi, "Mechanism of growth of MgO and CaCO3 during a dolomite partial decomposition," Solid State Ionics, vol. 178, no. 15–18, p.1039–1047, 2007.
DOI: 10.1016/j.ssi.2007.05.013
Google Scholar
[14]
A. De La Calle Martos, J. M. Valverde, P. E. Sanchez-Jimenez, A. Perejón, C. García-Garrido, and L. A. Perez-Maqueda, "Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions," Phys. Chem. Chem. Phys., vol. 18, no. 24, p.16325–16336, 2016.
DOI: 10.1039/c6cp01149g
Google Scholar
[15]
S. Maitra, A. Chowdhury, H. S. DAS, and M. J. Pramanik, "Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal," J. Mater. Sci., vol. 40, p.4749–4751, 2005.
DOI: 10.1007/s10853-005-0843-0
Google Scholar
[16]
F. Qinfang, Z. Hongwei, and G. Ying, "Thermal Decomposition of Dolomite," Adv. Mater. Res., vol. 177, p.617–619, 2011.
DOI: 10.4028/www.scientific.net/AMR.177.617
Google Scholar
[17]
M. V. Belousov, E. N. Selivanov, R. I. Gulyaeva, S. N. Tyushnyakov, and D. F. Rakipov, "Thermodynamics and kinetics of thermal dissociation of dolomite," Russ. J. Non-Ferrous Met., vol. 57, no. 3, p.180–186, 2016.
DOI: 10.3103/S1067821216030032
Google Scholar
[18]
A. I. Rat'Ko, A. I. Ivanets, A. I. Kulak, E. A. Morozov, and I. O. Sakhar, "Thermal decomposition of natural dolomite," Inorg. Mater., vol. 47, no. 12, p.1372–1377, 2011.
DOI: 10.1134/S0020168511120156
Google Scholar
[19]
M. Hartman, O. Trnka, V. Vesel, and K. Svoboda, "Predicting the rate of thermal decomposition of dolomite," Chem. Eng. Sci., vol. 51, no. 23, p.5229–5232, 1996.
DOI: 10.1016/s0009-2509(96)00363-6
Google Scholar
[20]
R. A. McCauley and L. A. Johnson, "Decrepitation and thermal decomposition of dolomite," Thermochim. Acta, vol. 185, no. 2, p.271–282, 1991.
DOI: 10.1016/0040-6031(91)80049-O
Google Scholar
[21]
N. Marinoni, S. Allevi, M. Marchi, M. Dapiaggi, V. Botticelli, and T. Ardito, "A Kinetic Study of Thermal Decomposition of Limestone Using In Situ High Temperature X-Ray Powder Diffraction," J. Am. Ceram. Soc., vol. 8, p.1–8, 2012, doi: 10.1111/j.1551-2916.2012. 05207.x.
DOI: 10.1111/j.1551-2916.2012.05207.x
Google Scholar
[22]
M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, M. S. Mohamad Amran, and Y. H. Taufiq-Yap, "Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process," J. Energy, vol. 2013, p.1–8, 2013.
DOI: 10.1155/2013/791582
Google Scholar
[23]
K. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, and T. Hirajima, "Microporous and Mesoporous Materials Effect of natural dolomite calcination temperature on sorption of borate onto calcined products," Microporous Mesoporous Mater., vol. 171, p.1–8, 2013.
DOI: 10.1016/j.micromeso.2012.12.029
Google Scholar