Thermal Decomposition Analysis of Indonesian Natural Dolomite in Air

Article Preview

Abstract:

Dolomite is widely used in the construction, glass ceramics, iron and steel, pharmaceutical industries, as a source of CaO and MgO and as thermal energy storage material. Thermal decomposition analysis of natural dolomite of the so-called Jeddih limestone has been carried out. A thermogravimetry analysis (TGA) in the air evaluates the thermal decomposition of dolomite. The natural dolomite has been analyzed by x-ray flourescence (XRF) and x-ray diffraction (XRD) to test crystal structure and decomposition phase, fourier transform infra-red (FTIR) was utilized to identify the presence of functional groups. The particle morphology was observed by scanning electron microscopy. TGA curve shows that the thermal decomposition of dolomite occurs in two stages. The first stage is in temperature range of 600 - 779°C and the second one is at the temperature 779°C. The results are in line with the XRD and FTIR measurements. Which shows that calcite begins to grow at a temperature of 600°C and MgO phase is observed at 700 - 900°C. Moreover, CaO phase starts to be found at 800°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-24

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Samtani, D. Dollimore, and K. S. Alexander, "Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters," Thermochim. Acta, vol. 392–393, p.135–145, 2002.

DOI: 10.1016/s0040-6031(02)00094-1

Google Scholar

[2] R. M. McINTOSH, J. H. Sharp, and F. W. Wiburn, "The thermal decomposition of dolomite samples," Thermochim. Acta, vol. 165, p.281–296, 1990.

Google Scholar

[3] S. Gunasekaran and G. Anbalangan, "Thermal decomposition of natural dolomite," Bull. Mater. Sci., vol. 30, no. 4, p.339–344, 2007.

DOI: 10.1134/S0020168511120156

Google Scholar

[4] B. K. Shahraki, B. Mehrabi, R. Dabiri, and K. Blv, "THERMAL BEHAVIOR OF ZEFREH DOLOMITE MINE ( CENTERAL IRAN )," J. Min. Metal., vol. 45, no. 1, p.35–44, 2009.

DOI: 10.2298/JMMB0901035S

Google Scholar

[5] M. Olszak-Humienik and M. Jablonski, "Thermal behavior of natural dolomite," J. Therm. Anal. Calorim., vol. 119, no. 3, p.2239–2248, 2015.

DOI: 10.1007/s10973-014-4301-6

Google Scholar

[6] A. Royani, E. Sulistiyono, and D. Sufiandi, "Dekomposisi Dolomit," J. Sains Mater. Indones., vol. 18, no. 1, p.41–46, 2016.

DOI: 10.17146/jsmi.2016.18.1.4186

Google Scholar

[7] Subagjo, W. Wulandari, P. M. Adinata, and A. Fajrin, "Thermal decomposition of dolomite under CO2-air atmosphere," AIP Conf. Proc., vol. 1805, no. January, 2017.

DOI: 10.1063/1.4974427

Google Scholar

[8] I. Efthimiopoulos, S. Jahn, A. Kuras, U. Schade, and M. Koch-Müller, "Combined high-pressure and high-temperature vibrational studies of dolomite: phase diagram and evidence of a new distorted modification," Phys. Chem. Miner., vol. 44, no. 7, p.465–476, 2017.

DOI: 10.1007/s00269-017-0874-5

Google Scholar

[9] O. Sivrikaya, "A study on the physicochemical and thermal characterisation of dolomite and limestone samples for use in ironmaking and steelmaking," Ironmak. Steelmak., vol. 45, no. 8, p.764–772, 2018.

DOI: 10.1080/03019233.2017.1337264

Google Scholar

[10] C. Rodriguez-Navarro, K. Kudlacz, and E. Ruiz-Agudo, "The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses," Am. Mineral., vol. 97, no. 1, p.38–51, 2012.

DOI: 10.2138/am.2011.3813

Google Scholar

[11] T. D. Humphries et al., "Dolomite: A low cost thermochemical energy storage material," J. Mater. Chem. A, vol. 7, no. 3, p.1206–1215, 2019.

DOI: 10.1039/c8ta07254j

Google Scholar

[12] H. Hashimoto, E. Komaki, F. Hayashi, and T. Uematsu, "Partial decomposition of dolomite in CO2," J. Solid State Chem., vol. 33, no. 2, p.181–188, 1980.

DOI: 10.1016/0022-4596(80)90118-8

Google Scholar

[13] H. Galai, M. Pijolat, K. Nahdi, and M. Trabelsi-Ayadi, "Mechanism of growth of MgO and CaCO3 during a dolomite partial decomposition," Solid State Ionics, vol. 178, no. 15–18, p.1039–1047, 2007.

DOI: 10.1016/j.ssi.2007.05.013

Google Scholar

[14] A. De La Calle Martos, J. M. Valverde, P. E. Sanchez-Jimenez, A. Perejón, C. García-Garrido, and L. A. Perez-Maqueda, "Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions," Phys. Chem. Chem. Phys., vol. 18, no. 24, p.16325–16336, 2016.

DOI: 10.1039/c6cp01149g

Google Scholar

[15] S. Maitra, A. Chowdhury, H. S. DAS, and M. J. Pramanik, "Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal," J. Mater. Sci., vol. 40, p.4749–4751, 2005.

DOI: 10.1007/s10853-005-0843-0

Google Scholar

[16] F. Qinfang, Z. Hongwei, and G. Ying, "Thermal Decomposition of Dolomite," Adv. Mater. Res., vol. 177, p.617–619, 2011.

DOI: 10.4028/www.scientific.net/AMR.177.617

Google Scholar

[17] M. V. Belousov, E. N. Selivanov, R. I. Gulyaeva, S. N. Tyushnyakov, and D. F. Rakipov, "Thermodynamics and kinetics of thermal dissociation of dolomite," Russ. J. Non-Ferrous Met., vol. 57, no. 3, p.180–186, 2016.

DOI: 10.3103/S1067821216030032

Google Scholar

[18] A. I. Rat'Ko, A. I. Ivanets, A. I. Kulak, E. A. Morozov, and I. O. Sakhar, "Thermal decomposition of natural dolomite," Inorg. Mater., vol. 47, no. 12, p.1372–1377, 2011.

DOI: 10.1134/S0020168511120156

Google Scholar

[19] M. Hartman, O. Trnka, V. Vesel, and K. Svoboda, "Predicting the rate of thermal decomposition of dolomite," Chem. Eng. Sci., vol. 51, no. 23, p.5229–5232, 1996.

DOI: 10.1016/s0009-2509(96)00363-6

Google Scholar

[20] R. A. McCauley and L. A. Johnson, "Decrepitation and thermal decomposition of dolomite," Thermochim. Acta, vol. 185, no. 2, p.271–282, 1991.

DOI: 10.1016/0040-6031(91)80049-O

Google Scholar

[21] N. Marinoni, S. Allevi, M. Marchi, M. Dapiaggi, V. Botticelli, and T. Ardito, "A Kinetic Study of Thermal Decomposition of Limestone Using In Situ High Temperature X-Ray Powder Diffraction," J. Am. Ceram. Soc., vol. 8, p.1–8, 2012, doi: 10.1111/j.1551-2916.2012. 05207.x.

DOI: 10.1111/j.1551-2916.2012.05207.x

Google Scholar

[22] M. A. A. Mohammed, A. Salmiaton, W. A. K. G. Wan Azlina, M. S. Mohamad Amran, and Y. H. Taufiq-Yap, "Preparation and Characterization of Malaysian Dolomites as a Tar Cracking Catalyst in Biomass Gasification Process," J. Energy, vol. 2013, p.1–8, 2013.

DOI: 10.1155/2013/791582

Google Scholar

[23] K. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, and T. Hirajima, "Microporous and Mesoporous Materials Effect of natural dolomite calcination temperature on sorption of borate onto calcined products," Microporous Mesoporous Mater., vol. 171, p.1–8, 2013.

DOI: 10.1016/j.micromeso.2012.12.029

Google Scholar