A Coin-Shaped Polypropylene Bio-Carrier Fabricated Using a Filament-Based 3D Printer for Wastewater Treatment

Article Preview

Abstract:

The utilization of the moving bed biofilm reactor (MBBR) has been identified as a promising technology for reducing water pollutants. This study focuses on designing a novel bio-carrier using 3D printing technology for use in an MBBR for wastewater treatment. The bio-carrier is made of polypropylene filament with four variations in specific surface area. The study investigates the relationship between the specific surface area and the amount of adhering biofilm on the bio-carrier. Results show that type-4 bio-carrier with a specific surface area of 1438.16 m2/m3 and a pore diameter of 1.8 mm to 4.9 mm has the highest mass of biofilm attachment at 2.598 grams. This research provides insights for designing bio-carriers with suitable pore diameters and specific surface areas for improved MBBR performance in wastewater treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-61

Citation:

Online since:

September 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sehar, I. Naz, Microbial Biofilms - Importance and Applications (2016).

Google Scholar

[2] E.H. Sanjaya, Y. Chen, Y. Guo, J. Wu, H. Chen, M.F.M. Din, Y.-Y. Li, Bioresour Technol 346 (2022) 126622.

Google Scholar

[3] A.R. Massoompour, M. Raie, S.M. Borghei, R. Dewil, L. Appels, J Environ Manage 302 (2022) 113976.

DOI: 10.1016/j.jenvman.2021.113976

Google Scholar

[4] S. Al-Amshawee, M.Y.B.M. Yunus, D.V.N. Vo, N.H. Tran, Environ Chem Lett 18 (2020) 1925–1945.

Google Scholar

[5] S. Al-Amshawee, M.Y.B.M. Yunus, Groundw Sustain Dev 12 (2021) 100520.

Google Scholar

[6] Q. Zhang, X. Chen, Z. Zhang, W. Luo, H. Wu, L. Zhang, X. Zhang, T. Zhao, Bioresour Technol 315 (2020) 123813.

Google Scholar

[7] O. Elliott, S. Gray, M. McClay, B. Nassief, A. Nunnelley, E. Vogt, J. Ekong, K. Kardel, A. Khoshkhoo, G. Proaño, D.M. Blersch, A.L. Carrano, J Contemp Water Res Educ 160 (2017) 144–156.

DOI: 10.1111/j.1936-704x.2017.03246.x

Google Scholar

[8] G. Proano-Pena, A.L. Carrano, D.M. Blersch, PLoS One 15 (2020) 1–17.

Google Scholar

[9] A. wan, Y. Wu, Y. Xie, B. Zhao, X. Qi, Chemical Engineering and Processing - Process Intensification 157 (2020) 108146.

DOI: 10.1016/j.cep.2020.108146

Google Scholar

[10] N. Dinh Vu, H. Thi Tran, T. Duy Nguyen, Int J Polym Sci 2018 (2018).

Google Scholar

[11] L.N. Shafigullin, N. v. Romanova, I.F. Gumerov, A.T. Gabrakhmanov, D.R. Sarimov, IOP Conf Ser Mater Sci Eng 412 (2018).

DOI: 10.1088/1757-899x/412/1/012070

Google Scholar

[12] A. Shitu, S. Zhu, W. Qi, M.A. Tadda, D. Liu, Z. Ye, J Environ Manage 275 (2020) 111264.

Google Scholar

[13] D. Seyferth, Science (1979) 205 (1979) 487–488.

Google Scholar