Development of a Numerical Model of the "Soil-Foundation-Building" System

Article Preview

Abstract:

The aim of this work is to develop a numerical model and perform numerical simulations of avalanche-like collapse of buildings and structures in case of fire and explosions, taking into account the peculiarities of soil performance and its properties. The LIRA-SAPR software is a promising tool for calculations and modelling.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-199

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kovalov, A., Otrosh, Y., Kovalevska, T., & Safronov, S. Methodology for assessment of the fire-resistant quality of reinforced-concrete floors protected by fire-retardant coatings, In  Materials Science and Engineering. IOP Publishing, 708 (1) (2019) p.012058.

DOI: 10.1088/1757-899x/708/1/012058

Google Scholar

[2] Loboichenko, V., Nikitina, N., Leonova, N., Konovalova, O., Bondarenko, A., Zemlianskyi, O., Rashkevich, N. Study of the features of determination of heavy metals in bottom sediments. In IOP Conference Series: Earth and Environmental Science, 1348 (1) (2024) p.012014.

DOI: 10.1088/1755-1315/1348/1/012014

Google Scholar

[3] K. Tsytlishvili, N. Rashkevich, D. Poltavska, Research of Modern technologies of Wastewater Treatment of Food Products Combined with Ozonation and Hydrogen Peroxide, Key Engineering Material. 925 (2022) 169–178.

DOI: 10.4028/p-t5m3y6

Google Scholar

[4] Andrii Kovalov, Yurii Otrosh, Oleksandr Chernenko, Maxim Zhuravskij, Marcin Anszczak. Modeling of Non-Stationary Heating of Steel Plates with Fire-Protective Coatings in Ansys under the Conditions of Hydrocarbon Fire Temperature Mode, In Materials Science Forum, 1038 (2021) pp.514-523.

DOI: 10.4028/www.scientific.net/msf.1038.514

Google Scholar

[5] S Guzii, Y Otrosh, O Guzii, A Kovalov, K Sotiriadis. Determination of the Fire-Retardant Efficiency of Magnesite Thermal Insulating Materials to Protect Metal Structures from Fire, In Materials Science Forum, 1038 (2021) pp.524-530.

DOI: 10.4028/www.scientific.net/msf.1038.524

Google Scholar

[6] Y. Skob, M. Ugryumov, E. Granovskiy, Numerical assessment of hydrogen explosion consequences in a mine tunnel, Int. J. Hydrog. Energy. 46 (2021) 12361–12371.

DOI: 10.1016/j.ijhydene.2020.09.067

Google Scholar

[7] Y. Skob, M. Ugryumov, Y. Dreval. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum. 1006 (2020) 117–122.

DOI: 10.4028/www.scientific.net/msf.1006.117

Google Scholar

[8] K. Кorytchehko, A. Ozerov, D. Vinnikov, Y. Skob, D. Dubinin, R. Meleshchenko, Numerical simulation of influence of the non-equilibrium excitation of molecules on direct detonation initiation by spark discharge, Probl. At. Sci. Technol. 116 (2018) 194–199.

Google Scholar

[9] N. Rashkevich, R. Shevchenko, I. Khmyrov, A. Soshinskiy. Investigation of the Influence of the Physical Properties of Landfill Soils on the Stability of Slopes in the Context of Solving Civil Security Problems, Materials Science Forum, 1038 (2021) 407–416.

DOI: 10.4028/www.scientific.net/msf.1038.407

Google Scholar

[10] I. Medved, V. Kovregin, O. Myrgorod, A. Lysenkom, Planning an Experiment for Low-Cycle Fatiue under Conditions Deep Cooling. Materials Science Forum. 1038 (2021) 9–14.

DOI: 10.4028/www.scientific.net/msf.1038.9

Google Scholar

[11] Krutii, Y., Kovrov, A., Otrosh, Y., & Surianinov, M. Analysis of Forced Longitudinal Vibrations of Columns Taking into Account Internal Resistance in Resonance Zones. In Materials Science Forum. 1006 (2020) 79 – 86.

DOI: 10.4028/www.scientific.net/msf.1006.79

Google Scholar

[12] I. Medved, Y. Otrosh, A. Kovalov, Y. Mykhailovska, Search for solutions in the problems of calculation of building structures. AIP Conference Proceedings. 2840(1) (2023) 040003.

DOI: 10.1063/5.0168054

Google Scholar

[13] Rashkevych, N.V. Analiz suchasnoho stanu poperedzhennya nadzvychaynykh sytuatsiy na terytoriyakh Ukrayiny, yaki zaznaly raketno-artyleriysʹkykh urazhenʹ. Komunalʹne hospodarstvo mist. 4 (178) (2023) 232–251.

Google Scholar

[14] Bashynska, O., Otrosh, Y., Holodnov, O., Tomashevskyi, A., & Venzhego, G. Methodology for Calculating the Technical State of a Reinforced-Concrete Fragment in a Building Influenced by High Temperature. Materials Science Forum, 1006 (2020) 166–172.

DOI: 10.4028/www.scientific.net/msf.1006.166

Google Scholar

[15] Pasternak, V., Ruban, A., Surianinov, M., Otrosh, Y., & Romin, A. Software Modeling Environment for Solving Problems of Structurally Inhomogeneous Materials. 1068 (2022) p.215–222.

DOI: 10.4028/p-h1c2rp

Google Scholar

[16] Poulos, H.G. (2016). Tall building foundations: design methods and applications. Innovative Infrastructure Solutions, 1. 1–51.

Google Scholar

[17] Van Nguyen, Q., Fatahi, B., & Hokmabadi, A.S. The effects of foundation size on the seismic performance of buildings considering the soil-foundation-structure interaction. Structural Engineering and Mechanics, (2016).

DOI: 10.12989/sem.2016.58.6.1045

Google Scholar

[18] Kundrat, T.M., Litnitsky, S.I., Pugachev, E.V., & Zdanevich, V.A. Structural model of determining of laying foundation depth. Suchasni problemy modelyuvannya, (23) (2022) 115–121.

Google Scholar

[19] Rasouli, H., Takhtfirouzeh, H., Taghavi Ghalesari, A., & Hemati, R. Bearing capacity improvement of shallow foundations using cement-stabilized sand. Key engineering materials, 723 (2017) 795–800.

DOI: 10.4028/www.scientific.net/kem.723.795

Google Scholar

[20] Shirazi, M.G., Rashid, A.S.B.A., Nazir, R.B., Rashid, A.H.B.A., Moayedi, H., Horpibulsuk, S., & Samingthong, W. Sustainable soil bearing capacity improvement using natural limited life geotextile reinforcement–A review. Minerals, 10(5) (2020) 479.

DOI: 10.3390/min10050479

Google Scholar

[21] Adajar, M. A., Gudes, M., & Tan, L. The use of woven geotextile for settlement reduction of spread footing on granular soil. GEOMATE Journal, 16(58) (2019) 211–217.

DOI: 10.21660/2019.58.8122

Google Scholar

[22] Razuvaev, D.A., Chakhlov, M.G., Soloviova, V.Y., & Karpachevsky, G.V. Injection compositions for creating impervious screen for roadbed foundation. Transportation Research Procedia, 61 (2022) 621–626.

DOI: 10.1016/j.trpro.2022.01.100

Google Scholar

[23] François, S., Schevenels, M., Thyssen, B., Borgions, J., & Degrande, G. Design and efficiency of a composite vibration isolating screen in soil. Soil Dynamics and Earthquake Engineering, 39 (2012) 113–127.

DOI: 10.1016/j.soildyn.2012.03.007

Google Scholar

[24] Bouassida, M., Fattah, M.Y., & Mezni, N. Bearing capacity of foundation on soil reinforced by deep mixing columns. Geomechanics and Geoengineering, 17(1) (2022) 309–320.

DOI: 10.1080/17486025.2020.1755458

Google Scholar

[25] Bonić, Z., Ćurčić, G. T., Trivunić, M., Davidović, N., & Vatin, N. Some methods of protection of concrete and reinforcment of reinforced-concrete foundations exposed to environmental impacts. Procedia Engineering, 117 (2015) 419–430.

DOI: 10.1016/j.proeng.2015.08.189

Google Scholar

[26] I. Medved, M. Surianinov, Y. Otrosh, O. Pirohov, Optimization of the calculated scheme. IOP Conf. Series: Material Science and Engineering. 1164 (2021) 012051.

DOI: 10.1088/1757-899x/1164/1/012051

Google Scholar

[27] O.Z. Dveirin, O.V. Andreev, A.V. Kondrat'ev, V.Ye. Haidachuk, Stressed State in the Vicinity of a Hole in Mechanical joint of Composite Parts, International Applied Mechanics. 57, 2 (2021) 234–247.

DOI: 10.1007/s10778-021-01076-4

Google Scholar

[28] Harte, M., Basu, B., Nielsen, S. Dynamic analysis of wind turbines including soil-structure interaction. Eng Struct, 45 (2012) 509–18.

DOI: 10.1016/j.engstruct.2012.06.041

Google Scholar

[29] Grange, S., Botrugno, L., Kotronis, P., Tamagnini, C. The effects of Soil–Structure Interaction on a reinforced concrete viaduct. Earthq Eng Struct Dyn, 40(1) (2011) 93–105.

DOI: 10.1002/eqe.1034

Google Scholar

[30] Salciarini, D., Tamagnini, C. A hypoplastic macroelement model for shallow foundations under monotonic and cyclic loads. Acta Geotechnica, 4(3) (2009) 163–76.

DOI: 10.1007/s11440-009-0087-2

Google Scholar

[31] Jeremic,´B., Jie, G., Preisig, M., Tafazzoli, N. Time domain simulation of soil–foundation–structure interaction in non-uniform soils. Earthq Eng Struct Dyn, 38(5) (2009) 699–718.

DOI: 10.1002/eqe.896

Google Scholar

[32] Kovalov, A., Purdenko, R., Otrosh, Y., Tоmеnkо V., Rashkevich, N., Shcholokov, E., Pidhornyy, M., Zolotova, N., & Suprun, O. (2022). Assessment of fire resistance of fireproof reinforced concrete structures. Eastern-European Journal of Enterprise Technologies, 5 (1 (119), 53–61.

DOI: 10.15587/1729-4061.2022.266219

Google Scholar

[33] Mahmoud H., Atadero R., Kirkpatrick A. Collapse simulations of steel buildings under fire. (Masters Thesis). Colorado State University (2016).

Google Scholar

[34] Nguyen, T. T. Composite Framed Buildings under Fire-Induced Progressive Collapse: Computational Analysis and Design Recommendations. (Doctoral Dissertation). University of Michigan (2017).

Google Scholar

[35] Nene, N. S. Finite element analysis on the behaviour of multi-storey steel frame with concrete slabs against progressive collapse under fire conditions. (Thesis). University of KwaZulu-Natal (2020).

Google Scholar

[36] Dong, G. Development of a general-purpose component-based connection element for structural fire analysis. (Doctoral Dissertation). University of Sheffield (2016).

Google Scholar

[37] Quan. G. A component-based approach to modelling beam-end buckling adjacent to beam-column connections in fire. (Doctoral Dissertation). University of Sheffield (2016).

Google Scholar

[38] Kunhou. H. "A study on the fire-induced progressive collapse of steel plated structures of offshore installations." 2022. Doctoral Dissertation, University College London (University of London). Accessed November 11, 2023.

Google Scholar

[39] Kovalov A., Otrosh Y., Rybka E., Kovalevska T., Togobytska V. and Rolin I. Treatment of Determination Method for Strength Characteristics of Reinforcing Steel by Using Thread Cutting Method after Temperature Influence. In Materials Science Forum. 1006 (2020) 179–184.

DOI: 10.4028/www.scientific.net/msf.1006.179

Google Scholar

[40] Yurii Skob, Yuriy Dreval, Alexey Vasilchenko, Roman Maiboroda. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials. 952 (2023) 121-129.

DOI: 10.4028/p-st1vet

Google Scholar