The Ultimate Strength of Deck Barge 270 Feet under of Global Load Using Numerical Simulation Method

Article Preview

Abstract:

Barges generally have an even distribution of load weight on the deck. The tendency of barges to experience hull fractures is at 0.2 ~ 0.7 L during material loading mode.The pupose of the research is to determine the ultimate strength of barge construction during loading mode. The method used is a numerical simulation. The research results show that the maximum stress value under hogging conditions for loadcase 1 and loadcase 2 with intact plate thickness is 221.204 Mpa and 223.207 MPa, the maximum stress value in hogging conditions for loadcase 1 and loadcase 2 with 20% reduction in plate thickness is 188.973 MPa and 196.303 MPa, and the maximum stress value in hogging conditions for loadcase 1 and loadcase 2 with a plate thickness reduction of 25% is 170.054 MPa and 164.861 MPa. The largest ultimate moment value was obtained in loadcase 2 hogging conditions with intact plate thickness, namely 1.92 x 1011 Nmm. The thinner the construction plate, the lower its ultimate strength will be. The addition of sideboards to the barge deck can also affect the ultimate strength value he construction safety factor is rated 1.064 ~ 1.425.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

45-58

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Gan, Z. Yan, L. Zhang, K. Liu, Y. Zheng, C. Zhou, Y. Shou, "Ship path planning based on safety potential field in inland rivers," Ocean Eng., vol. 260, no. 111928, p.1–9, 2022, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S0029801822012665.

DOI: 10.1016/j.oceaneng.2022.111928

Google Scholar

[2] B. W. Nam and J. Y. Park, "Numerical simulation for a passing ship and a moored barge alongside quay," Int. J. Nav. Archit. Ocean Eng., vol. 10, p.566–582, 2018, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2092678217300742.

DOI: 10.1016/j.ijnaoe.2017.10.008

Google Scholar

[3] M. U. Pawara, W. Setiawan, Alamsyah, Suardi, R. Ramadhani, "Design of Self-Propelled Container Barge for Logistics Transportation of Samarinda-Kotabangun," J. Penelit. Enj., vol. 25, no. 2, p.92–97, 2021, [Online]. Available: https://cot.unhas.ac.id/journals/ index.php/jpe/article/view/1410/1021.

DOI: 10.25042/jpe.112021.02

Google Scholar

[4] M. U. Pawara, Alamsyah, I. P. A. Kusuma , A. I. Wulandari, R. J. Ikhwani, A. M. N. Arifuddin, "A Finite Element Analysis of Bottom Structure of LCT Converted from SPOB," Marit. Park J. Marit. Technol. Soc., vol. 2, no. 1, p.8–15, 2023.

DOI: 10.62012/mp.v2i1.25130

Google Scholar

[5] Alamsyah, C. H. Gonawan, R. J. Ikhwani, T. Hidayat, Habibi, W. Suwedy, "Numerical Investigation of the Laying of Airbag Arrangements on Launching Barges," Int. J. Mar. Eng. Innov. Res., vol. 8, no. 2, p.202–212, 2023, [Online]. Available: https://iptek.its.ac.id/index. php/ijmeir/article/view/16737.

DOI: 10.12962/j25481479.v8i2.16737

Google Scholar

[6] Alamsyah, A. I. Wulandari, N. S. Oktaparo, M. U. Pawara, M. Riyadi, "The Fatigue Life Assessment of Sideboard on Deck Barge Using Finite Element Methods," J. Ind. Res. Innov., vol. 16, no. 1, p.1–10, 2022, [Online]. Available: https://ejournal.brin.go.id/MIPI/article/ view/1292.

DOI: 10.29122/mipi.v16i1.5201

Google Scholar

[7] H. Hu, X. Li, C. Wang, W. Chen, "Study on the flooding characteristics of damaged barges with dynamic explosive deformation," Int. J. Nav. Archit. Ocean Eng., vol. 16, no. 100589, pp.1-15, 2024, [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2092678224000086.

DOI: 10.1016/j.ijnaoe.2024.100589

Google Scholar

[8] M. Z. M. Alie, M. Fathurahkman, Juswan, F. A. Prasetyo, "Numerical estimation of ultimate strength on double hull oil tanker cargo area," in Developments in the Analysis and Design of Marine Structures, 2021, p.6.

DOI: 10.1201/9781003230373-14

Google Scholar

[9] A. I. Wulandari, R. J. Ikhwani, Suardi, R. S. Yani, A. N. Himaya, Alamsyah, "Collision Analysis Of A Self Propelled Oil Barge (SPOB) Using Finite Element Method," J. Mar. Sci. Technol., vol. 19, no. 2, p.101–111, 2022, [Online]. Available: https://ejournal.undip.ac.id/ index.php/kapal/article/view/45417.

DOI: 10.14710/kapal.v19i2.45417

Google Scholar

[10] Alamsyah, I. Setiawan, A. I. Wulandari, R. J. Ikhwani, Suardi, "Fatigue Life Assessment Of Deck Barge Construction Using Numerical Simulation Methods," Zo. Laut J. Ocean Sci. Technol. Innov., vol. 4, no. 2, p.94–102, 2023, [Online]. Available: https://journal.unhas.ac.id/ index.php/zonalaut/article/view/26541.

DOI: 10.62012/zl.v4i2.26541

Google Scholar

[11] Alamsyah, F. I. Sari, A. M. N. Arifuddin, M. U. Pawara, A. A. Mubarak, Hijriah, "Experimental Test of Tensile Strength of Barge Deck Plate Welded Joints," Int. J. Metacentre, vol. 2, no. 2, p.9–17, 2022, [Online]. Available: http://ijm-nasp.unhas.ac.id/index.php/ijm/article/view/21.

Google Scholar

[12] M. Z. M. Alie, S. I. Latumahina, "Progressive Collapse Analysis Of The Local Elements And Ultimate Strength Of A Ro-Ro Ship," Int. J. Technol., vol. 10, no. 5, p.1065–1074, 2019, [Online]. Available: https://ijtech.eng.ui.ac.id/article/view/1768.

DOI: 10.14716/ijtech.v10i5.1768

Google Scholar

[13] M. Z. M. Alie, R. Iriani, Juswan, M. I. Ramadhan, "Ultimate Strength Analysis of FPSO Hull Girder Under Longitudinal Bending," in The 2nd EPI International Conference on Science and Engineering, 2019, p.1–7, [Online]. Available: https://iopscience.iop.org/article/10.1088/ 1757-899X/676/1/012018.

DOI: 10.1088/1757-899x/676/1/012018

Google Scholar

[14] S. F. D. Marola, F. Husain, M. Z. M. Alie, A. Cipto, "The ultimate strength analysis of jacket leg under deck load," in ICROEST, 2019, p.1–5, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1755-1315/343/1/012082

Google Scholar

[15] M. Z. M. Alie, Juswan, C. Paotonan, T. Rachman "Ultimate Strength Investigation of Ro-Ro Ship," in The 5th International Symposium on Material, Mechatronics and Energy, 2019, p.1–6, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1757-899X/619/1/012010

Google Scholar

[16] M. Ishaq, Juswan, M. Z. M. Alie, "The ultimate strength of the skid frame on Mooring Support Structure (MSS)," in ICROEST 2020, 2020, p.1–4, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1755-1315/575/1/012200

Google Scholar

[17] A. V. Lukman, Juswan, M. Z. M. Alie, A. I. Wulandari, "The ultimate strength characteristics on double hull oil tanker," in ICROEST 2020, 2020, p.1–6, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1755-1315/575/1/012195

Google Scholar

[18] G. V Rapa, Juswan, M. Z. M. Alie, S. Elviana, "Effect of mesh on a shell and solid element to the ultimate strength of beam and plate," in ICROEST, 2019, p.1–6, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1755-1315/343/1/012080

Google Scholar

[19] P. A. N. Lestari, Ashury, M. Z. M. Alie, S. Wairara, "Effect of profile element dimension to the ultimate hull girder strength," in ICROEST, 2019, p.1–7, [Online]. Available: https://iopscience.iop.org/article/.

DOI: 10.1088/1755-1315/343/1/012077

Google Scholar

[20] U. Q. Parantean, Juswan, M. Z. M. Alie, K. A. Rahangmetan, "Ultimate strength analysis of stiffened plate variation on the longitudinal bulkhead of Double Hull Oil Tanker," in ICROEST, 2019, p.1–9, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/343/1/ 012084.

DOI: 10.1088/1755-1315/343/1/012084

Google Scholar

[21] Safitri, T. Rachman, M. Z. M. Alie, F. Sariman, "Ultimate strength analysis of stiffened plate variation on double bottom of Floating Production Storage Offloading (FPSO)," in ICROEST, 2019, p.1–6, [Online]. Available: https://iopscience.iop.org/article/10.1088/1755-1315/343/1/ 012083.

DOI: 10.1088/1755-1315/343/1/012083

Google Scholar

[22] M. Z. M. Alie, Juswan, W. Mustafa, K. G. Pangalinan, "The Influence of Additional Equipment to the Ultimate Strength of FPSO," in In Proceedings of the 7th International Seminar on Ocean and Coastal Engineering, Environmental and Natural Disaster Management (ISOCEEN 2019), 2021, p.83–87, [Online]. Available: https://www.semanticscholar.org/paper/The-Influence-of-Additional-Equipment-to-the-of-Alie-Juswan/bcff39cb3f944d91de0c7522fc9bc0a8de9b195f.

DOI: 10.5220/0010056700830087

Google Scholar

[23] F. Laskari, D. Qurniawan, "Hull of Barge Broken Then Sinks in Waters of Airkantung Sungailiat," Bangka Pos, Pangkap Pinang, Apr. 2020.

Google Scholar

[24] ANSYS, "Perpetual license 1 task Life Time Institut Teknologi Kalimantan." 2021.

Google Scholar

[25] C. wang, X. Hu, T. Tian, C. Guo, Ch. Wang, "Numerical simulation of ice loads on a ship in broken ice fields using elastic ice model," Int. J. Nav. Archit. Ocean Eng., vol. 12, pp.414-427, 2020, [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2092678220300030.

DOI: 10.1016/j.ijnaoe.2020.03.001

Google Scholar

[26] D. Saad and G. Dundulis, R. Janulionis, "Numerical simulation of SIF in Es-Salam research reactor vessel," Eng. Fail. Anal., vol. 96, no. February, p.394–408, 2019, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/S1350630718306319.

DOI: 10.1016/j.engfailanal.2018.10.014

Google Scholar

[27] C. G. Soares, N. Zhao, BQ. Chen, YQ. Zhou, ZJ. Li, JJ. Hu, "Experimental and numerical investigation on the ultimate strength of a ship hull girder model with deck openings," Mar. Struct., vol. 83, no. 103175, p.1–18, 2022, [Online]. Available: https://www.sciencedirect.com/ science/article/pii/S0951833922000181.

DOI: 10.1016/j.marstruc.2022.103175

Google Scholar

[28] G. Martynenko, K. Avramov, V. Martynenko, M. Chernobryvko, A. Tonkonozhenko, V. Kozharin, "Numerical simulation of warhead transportation," Def. Technol., vol. 17, no. 2, p.478–494, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2214914719313479.

DOI: 10.1016/j.dt.2020.03.005

Google Scholar

[29] Y. Liao, Q. Cai, S. He, M. Wang, H. Xiao, Z. Gong, C. Wang, Z. Jia, T. Feng, S. Qiu, "Study on three-dimensional numerical simulation of shell and tube heat exchanger of the surface ship under marine conditions," Nucl. Eng. Technol., vol. 55, p.1233–1243, 2023, [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1738573322005873.

DOI: 10.1016/j.net.2022.12.020

Google Scholar

[30] D. Chen, R. Yan, X. Lu, "Mechanical properties analysis of the naval ship similar model with an integrated sandwich composite superstructure," Ocean Eng., vol. 232, no. 109101, 2021, [Online]. Available: https://www.sciencedirect.com/science/article/abs/pii/ S0029801821005369.

DOI: 10.1016/j.oceaneng.2021.109101

Google Scholar

[31] L. P. Adnyani, N. Aisyah, S. Sulistijono, R. G. Harahap, A. Dianiswara, Nurmawati, "Deck Strength Analysis of NANIA 10070 DWT BARGE With Two Loading Methods," J. Mar. Sci. Technol., vol. 16, no. 2, p.49–55, 2019, [Online]. Available: https://ejournal.undip.ac.id/index.php/kapal/article/view/22149.

DOI: 10.14710/kapal.v16i2.22149

Google Scholar

[32] O. Hughes, J. K. Paik, Ship Structural Analysis and Design. SNAME, 2010.

Google Scholar

[33] BKI, Rules For The Classification and Construction of Sea Going Steel Ship Vol. II Rules For Hull, July 2024. Jakarta: BKI, 2024.

Google Scholar

[34] M. Z. M. Alie, Juswan, T. Rachman, W. Mustafa, Alamsyah, E. F. Rahmadani, "The Effect Of Side Girder Distance In Bottom Structure To The Ultimate Strength On Double Hull Tanker," in Proceedings of the ASME 2024 43rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2024, 2024, p.1–6.

DOI: 10.1115/omae2024-124756

Google Scholar