[1]
D. Patil, Y. Wang, L, Liang, K. Puduppakkam, A. Hussein, C. Naik, E. Meeks, Large-Eddy Simulation and Analysis of Turbulent Flows in a Motored Spark-Ignition Engine, SAE Technical Papers. 2018
DOI: 10.4271/2018-01-0202
Google Scholar
[2]
Y Yu, G. Li, Y. Wang, J. Ding, Modeling the atomization of high-pressure fuel spray by using a new breakup model, Applied Mathematical Modelling.40(1) (2016) 268–283
DOI: 10.1016/j.apm.2015.04.046
Google Scholar
[3]
A. B. Liu, D. Mather, R. D. Reitz, Modeling the effects of drop drag and breakup on fuel sprays, SAE Technical Papers. (1993)
DOI: 10.4271/930072
Google Scholar
[4]
A. Hasan, O. J. Haidn, Jet A and Propane gas combustion in a turboshaft engine: performance and emissions reductions, SN Applied Sciences. 3(4) (2021) 471
DOI: 10.1007/s42452-021-04468-w
Google Scholar
[5]
E. Elmtoft, A. S. (Ed) Cheng, N. Killingsworth, R. Whitesides, R., Injected Droplet Size Effects on Diesel Spray Results with RANS and LES Turbulence Models, SAE Technical Paper Series. 1(2015)
DOI: 10.4271/2015-01-0925
Google Scholar
[6]
J. Matheis, S. Hickel, Multi-component vapor-liquid equilibrium model for LES of high-pressure fuel injection and application to ECN Spray A, International Journal of Multiphase Flow. 99 (2018) 294–311
DOI: 10.1016/j.ijmultiphaseflow.2017.11.001
Google Scholar
[7]
G. Lupo, A. Gruber, L. Brandt, C. Duwig, Direct numerical simulation of spray droplet evaporation in hot turbulent channel flow, International Journal of Heat and Mass Transfer. 160 (2020) 120184
DOI: 10.1016/j.ijheatmasstransfer.2020.120184
Google Scholar
[8]
A. Abdelsamie, C. Chi, M. Nanjaiah, L. Skenderović, S. Suleiman, D Thévenin, Direct Numerical Simulation of Turbulent Spray Combustion in the SpraySyn Burner: Impact of Injector Geometry, Flow, Turbulence and Combustion. 106(2) (2021) 453–469
DOI: 10.1007/s10494-020-00183-5
Google Scholar
[9]
W. Mitianieca, Combustion of CNG in charged spark ignition engines, AIP Conference Proceedings. 1190(2009) 98–113
DOI: 10.1063/1.3290172
Google Scholar
[10]
C. J. Rutland, Large-eddy simulations for internal combustion engines - A review. International Journal of Engine Research. 12(5) (2011) 421–451
DOI: 10.1177/1468087411407248
Google Scholar
[11]
I. Ko, A. D'Adamo, S. Fontanesi, K. Min, Study of les Quality Criteria in a Motored Internal Combustion Engine, SAE Technical Papers. 2017
DOI: 10.4271/2017-01-0549
Google Scholar
[12]
C. P. Arroyo, J. Dombard, F. Duchaine, L. Gicquel, B. Martin, N. Odier, G. Staffelbach, Towards the large-eddy simulation of a full engine: Integration of a 360 azimuthal degrees fan, compressor and combustion chamber. part i: Methodology and initialization, Journal of the Global Power and Propulsion Society. (2021) (Special Issue) 1–16
DOI: 10.33737/jgpps/133115
Google Scholar
[13]
M. Ghaderi Masouleh, K. Keskinen, O. Kaario, H. Kahila, S. Karimkashi, V. Vuorinen, Modeling cycle-to-cycle variations in spark ignited combustion engines by scale-resolving simulations for different engine speeds, Applied Energy. 250(2019) 801–820
DOI: 10.1016/j.apenergy.2019.03.198
Google Scholar
[14]
S.Wadekar, P. Janas, M. Oevermann, Large-eddy simulation study of combustion cyclic variation in a lean-burn spark ignition engine, Applied Energy. 255(2019) 113812
DOI: 10.1016/j.apenergy.2019.113812
Google Scholar
[15]
C. Chen, P. Pal, M. Ameen, D. Feng, H. Wei, Large-eddy simulation study on cycle-to-cycle variation of knocking combustion in a spark-ignition engine, Applied Energy. 261(2020) 114447
DOI: 10.1016/j.apenergy.2019.114447
Google Scholar
[16]
C. Y. Chang, B. Krumbein, M. Bopp, B. Basara, A. Sadiki, C. Hasse, A. Dreizler, B. Boehm, S. Jakirlic, Structural Flow Properties in IC Engine-Relevant Piston-Cylinder Configurations: An Eddy-Resolving Modelling Study, SAE Technical Papers (2022)
DOI: 10.4271/2022-01-0399
Google Scholar
[17]
J. Smagorinsky, General Circulation Experiments With the Primitive Equations, Monthly Weather Review. 91(3) (1963) 99–164.
DOI: 10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
Google Scholar
[18]
P. A. Durbin, Basics of turbulence, In Advanced Approaches in Turbulence: Theory, Modeling, Simulation, and Data Analysis for Turbulent Flows, Elsevier , 2021, p.1–32
DOI: 10.1016/B978-0-12-820774-1.00007-0
Google Scholar
[19]
S. Menon, P. K. Yeung, W. W. Kim, Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence, Computers & Fluids. 25(2) (1996) 165–180
DOI: 10.1016/0045-7930(95)00036-4
Google Scholar
[20]
M. Germano, U. Piomelli, P. Moin, W. H. Cabot, A dynamic subgrid-scale eddy viscosity model, Physics of Fluids A. 3(7) (1991) 1760–1765
DOI: 10.1063/1.857955
Google Scholar
[21]
A. Vela-Martín, Subgrid-scale models of isotropic turbulence need not produce energy backscatter, Journal of Fluid Mechanics. 937(2020) A14
DOI: 10.1017/jfm.2022.123
Google Scholar
[22]
E. Pomraning, C. J. Rutland, Dynamic one-equation nonviscosity large-eddy simulation model. AIAA Journal. 40(4) (2002) 689–701
DOI: 10.2514/2.1701
Google Scholar
[23]
N. Bharadwaj, C. J. Rutland, S. Chang, Large eddy simulation modelling of spray-induced turbulence effects, International Journal of Engine Research. 10(2) (2009) 97–119
DOI: 10.1243/14680874JER02309
Google Scholar
[24]
C. W. Tsang, C. J. Rutland, Effects of Numerical Schemes on Large Eddy Simulation of Turbulent Planar Gas Jet and Diesel Spray, SAE International Journal of Fuels and Lubricants. 9(1) (2016) 149–164
DOI: 10.4271/2016-01-0866
Google Scholar
[25]
P. K. Senecal, E. Pomraning, K. J. Richards, S. Som, An investigation of grid convergence for spray simulations using an les turbulence model, SAE Technical Papers, (2013)
DOI: 10.4271/2013-01-1083
Google Scholar
[26]
Information on http://www.sandia.gov/ecn/.
Google Scholar
[27]
ANSYS Forte, Forte Theory manual R2021R1, ANSYS Inc., 2021.
Google Scholar
[28]
R. D. Reitz, Mechanisms of atomization processes in high-pressure vaporizing sprays, Atomization and Spray Technology. 3(1987) 309–337.
Google Scholar
[29]
J. C. Beale, R.D. Reitz, Modeling spray atomization with the Kelvin-Helmholtz/Rayleigh-Taylor hybrid model, Atomization and Sprays. 9(6) (1999) 623–650
DOI: 10.1615/atomizspr.v9.i6.40
Google Scholar
[30]
G M. Faeth, Current status of droplet and liquid combustion, Progress in Energy and Combustion Science.3(4) (1977) 191–224
DOI: 10.1016/0360-1285(77)90012-0
Google Scholar
[31]
D. P. Schmidt, C, J, Rutland, A New Droplet Collision Algorithm, Journal of Computational Physics. 164(1) (2000) 62–80
DOI: 10.1006/jcph.2000.6568
Google Scholar
[32]
S. L. Post, J. Abraham, Modeling the outcome of drop-drop collisions in Diesel sprays, International Journal of Multiphase Flow. 28(6) (2002) 997–1019
DOI: 10.1016/S0301-9322(02)00007-1
Google Scholar
[33]
P.Ghadimi, M. Yousefifard, H. Nowruzi, Particle and gas flow modeling of wall-impinging diesel spray under ultra-high fuel injection pressures, Journal of Applied Fluid Mechanics. 10(5) (2017) 1283–1291
DOI: 10.18869/acadpub.jafm.73.242.27259
Google Scholar
[34]
L. M. Pickett, J. Manin, A. Kastengren, C. Powell, Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography, SAE International Journal of Engines. 7(2) (2014) 1044–1053
DOI: 10.4271/2014-01-1412
Google Scholar
[35]
C. W. Tsang, Y. Wang, C. Wang, A. Shelburn, L. Liang, K. Puduppakkam, A. Modak, C. Naik, E. Meeks, C. J. Rutland, Evaluation and Validation of Large-Eddy-Simulation (LES) for Gas Jet and Sprays, SAE Technical Papers. (2017)
DOI: 10.4271/2017-01-0844
Google Scholar
[36]
L. Liang, Y. Wang, A. Shelburn, C. Wang, A. Modak, E. Meeks, Applying Solution-Adaptive Mesh Refinement in Engine Simulations, International Multidimensional Engine Modeling User's Group Meeting,Detroit. MI (2016).
Google Scholar