Investigation of Microstructure, Corrosion Performance and Mechanical Properties of Mg- 6.5Zn- 7.24Sn- 1.22Ca Alloy

Article Preview

Abstract:

This study investigates the Mg-6.5Zn-7.24Sn-1.22Ca alloy, focusing on its microstructural evolution, corrosion resistance, and mechanical performance under varying thermal and mechanical treatments. The alloy was cast under an argon environment, homogenized at 400°C for 18 hours, and hot rolled at 400°C with a 15% thickness reduction. Microstructural analysis through XRD, SEM-EDS, and optical microscopy revealed grain refinement, phase redistribution, and reduced porosity after rolling. Corrosion behavior in 3.5% NaCl solution, assessed via electrochemical techniques and weight loss measurements, indicated superior corrosion resistance in the homogenized condition due to reduced micro-galvanic coupling. Rolling, however, increased corrosion susceptibility due to strain-induced defects. High-temperature ( 200°C- 350°C ) tensile tests at strain rates of 10-4 and 5×10-4 s-1 demonstrated that tensile strength decreases with temperature, driven by dynamic recrystallization and grain boundary sliding. Strain rate variations revealed increased tensile strength at higher rates due to enhanced dislocation density and strain hardening. These findings highlight the interplay between processing conditions, strain rates, and alloy performance, offering insights for optimizing magnesium alloys for advanced engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-75

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kenji HI, Shigeharu KA, Yoshihito KA. Special Issue on Platform Science and Technology for Advanced Magnesium Alloys IV. Materials transactions. 2008 May 1;49(5):893.

Google Scholar

[2] Smaradhana DF. The Manufacturing Process and Corrosion Properties of Magnesium Matrix Composites: A Review. Mechanics Exploration and Material Innovation. 2024 Jan 31;1(1):7-19.

DOI: 10.21776/ub.memi.2024.001.01.2

Google Scholar

[3] Huang Y, Jiang B. Editorial for special issue on developments of magnesium alloys for structural and functional applications. International Journal of Minerals, Metallurgy and Materials. 2022 Jul;29(7):1307-9.

DOI: 10.1007/s12613-022-2515-3

Google Scholar

[4] Chirita B, Mustea G, Brabie G. A statistical analysis applied for optimal cooling system selection and for a superior surface quality of machined magnesium alloy parts. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2015 Mar;229(3):392-408.

DOI: 10.1177/0954405414530895

Google Scholar

[5] Gurgenc T, Altay O. Surface roughness prediction of wire electric discharge machining (WEDM)-machined AZ91D magnesium alloy using multilayer perceptron, ensemble neural network, and evolving product-unit neural network. Materials Testing. 2022 Mar 28;64(3):350-62.

DOI: 10.1515/mt-2021-2034

Google Scholar

[6] Razavi M, Fathi M, Savabi O, Vashaee D, Tayebi L. In vivo study of nanostructured akermanite/PEO coating on biodegradable magnesium alloy for biomedical applications. Journal of biomedical materials research Part A. 2015 May;103(5):1798-808.

DOI: 10.1002/jbm.a.35324

Google Scholar

[7] Zhang H, Gao M, Tian X, Cao D, Tan L. Study on Mechanical Properties and Degradation Behavior of Magnesium Alloy Vascular Clip. Journal of Functional Biomaterials. 2023 Oct 9;14(10):501.

DOI: 10.3390/jfb14100501

Google Scholar

[8] Zou Z, Liu K, Li Y. Electrochemical methods, quantum chemical, and molecular dynamics methods to analyze the corrosion inhibition mechanism of phytic acid/praseodymium composite conversion coating on the AZ31B magnesium alloy. Molecular Crystals and Liquid Crystals. 2023 Jun 13;758(1):111-34.

DOI: 10.1080/15421406.2022.2158278

Google Scholar

[9] Liu S, Wang Y, Huang H, Huang G. A review on corrosion and corrosion inhibition behaviours of magnesium alloy in ethylene glycol aqueous solution. Corrosion Reviews. 2023 Dec 15;41(6):649-58.

DOI: 10.1515/corrrev-2023-0020

Google Scholar

[10] Liu X, Mao P, Zhou L, Wang X, Wang Z, Wang F, Wei Z, Liu Z. Effect of Grain Size on Dynamic Compression Behavior and Deformation Mechanism of ZK60 Magnesium Alloy. Metals. 2023 Feb 3;13(2):314.

DOI: 10.3390/met13020314

Google Scholar

[11] He J, Chen WZ, Zhang ZJ, Chen XM, Ma JF, Wang WK, Zhang WC. Extrusion techniques on microstructure optimization and quantitative analysis of texture influence on ductility improvement for heat-resistant Mg–Nd–Zn–Zr magnesium alloy. Journal of Materials Science. 2022 Feb;57(6):4334-53.

DOI: 10.1007/s10853-022-06881-x

Google Scholar

[12] Tur E, Öztürk F. AZ31 Magnesium Alloy in the Aerospace Industry: A Review on the Effect of Composition, Microstructure, and Mechanical Properties on Alloy Performance. Kocaeli Journal of Science and Engineering. 2024 Nov 11;7(2):109-30.

DOI: 10.34088/kojose.1334496

Google Scholar

[13] Niu W, Wang D, Wang G, Li J. Recrystallization and Anisotropy of AZ31 Magnesium Alloy by Asynchronous Rolling. Metals. 2023 Sep 21;13(9):1631.

DOI: 10.3390/met13091631

Google Scholar

[14] Danyuk AV, Merson DL, Brilevskiy AI, Afanasyev MA. Determination of the stress threshold and microstructural factors forming the nonlinear unloading effect of the ZK60 (MA14) magnesium alloy. Frontier Materials & Technologies. 2023 Dec 29(4):31-9.

DOI: 10.18323/2782-4039-2023-4-66-3

Google Scholar

[15] Han M, Du J, Chen Y, Sun Q, Hu K. Influence of ultrasonic shot peening on the microstructure and corrosion behavior of AZ80M magnesium alloy. Journal of Alloys and Compounds. 2024 Apr 15; 980:173633.

DOI: 10.1016/j.jallcom.2024.173633

Google Scholar

[16] Maqsood MF, Raza MA, Rehman ZU, Tayyeb A, Makhdoom MA, Ghafoor F, Latif U, Khan MF. Role of solvent used in development of graphene oxide coating on az31b magnesium alloy: Corrosion behavior and biocompatibility analysis. Nanomaterials. 2022 Oct 25;12(21):3745.

DOI: 10.3390/nano12213745

Google Scholar

[17] Moses A, Chen D, Wan P, Wang S. Prediction of electrochemical corrosion behavior of magnesium alloy using machine learning methods. Materials Today Communications. 2023 Dec 1; 37:107285.

DOI: 10.1016/j.mtcomm.2023.107285

Google Scholar

[18] Meng L, Liu X, Liu L, Hong Q, Cheng Y, Gao F, Chen J, Zhang Q, Pan C. Comparative investigation of the corrosion behavior and biocompatibility of the different chemical conversion coatings on the magnesium alloy surfaces. Metals. 2022 Sep 30;12(10):1644.

DOI: 10.3390/met12101644

Google Scholar

[19] Woo SK, Yim CD, Kim HS, You BS. Effects of Microstructural Factors on Corrosion Behavior of As-Extruded Mg-Sn-Zn Alloys in Immersion and Salt Spray Environments. Corrosion. 2016 Sep 1;72(9):1146-54.

DOI: 10.5006/2053

Google Scholar

[20] Han M, Du J, Chen Y, Sun Q, Hu K. Influence of ultrasonic shot peening on the microstructure and corrosion behavior of AZ80M magnesium alloy. Journal of Alloys and Compounds. 2024 Apr 15; 980:173633.

DOI: 10.1016/j.jallcom.2024.173633

Google Scholar

[21] Alateyah AI, Alawad MO, Aljohani TA, El-Garaihy WH. Influence of ultrafine-grained microstructure and texture evolution of ECAPed ZK30 magnesium alloy on the corrosion behavior in different corrosive agents. Materials. 2022 Aug 11;15(16):5515.

DOI: 10.1016/j.jallcom.2024.173633

Google Scholar

[22] Johnston S, Shi Z, Atrens A. The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution. Corrosion Science. 2015 Dec 1; 101:182-92.

DOI: 10.1016/j.corsci.2015.09.018

Google Scholar

[23] Ning C, Zhou L, Zhu Y, Li Y, Yu P, Wang S, He T, Li W, Tan G, Wang Y, Mao C. Influence of surrounding cations on the surface degradation of magnesium alloy implants under a compressive pressure. Langmuir. 2015 Dec 22;31(50):13561-70.

DOI: 10.1021/acs.langmuir.5b03699

Google Scholar

[24] Bohlen J, Meyer S, Wiese B, Luthringer-Feyerabend BJ, Willumeit-Römer R, Letzig D. Alloying and processing effects on the microstructure, mechanical properties, and degradation behavior of extruded magnesium alloys containing calcium, cerium, or silver. Materials. 2020 Jan 15;13(2):391.

DOI: 10.3390/ma13020391

Google Scholar

[25] Yang L, Wang T, Liu C, Ma Y, Wu L, Yan H, Zhao X, Liu W. Microstructures and mechanical properties of AZ31 magnesium alloys fabricated via vacuum hot-press sintering. Journal of Alloys and Compounds. 2021 Jul 25; 870:159473.

DOI: 10.1016/J.JALLCOM.2021.159473

Google Scholar

[26] Li L, Liu W, Qi F, Wu D, Zhang Z. Effects of deformation twins on microstructure evolution, mechanical properties and corrosion behaviours in magnesium alloys-a review. Journal of Magnesium and Alloys. 2022 Sep 1;10(9):2334-53.

DOI: 10.1016/j.jma.2022.09.003

Google Scholar

[27] Wang T, Liu F. Optimizing mechanical properties of magnesium alloys by philosophy of thermo-kinetic synergy: Review and outlook. Journal of Magnesium and Alloys. 2022 Feb 1;10(2):326-55.

DOI: 10.1016/j.jma.2021.12.016

Google Scholar

[28] Wan YJ, Zeng Y, Dou YC, Hu DC, Qian XY, Zeng Q, Sun KX, Quan GF. Improved mechanical properties and strengthening mechanism with the altered precipitate orientation in magnesium alloys. Journal of Magnesium and Alloys. 2022 May 1;10(5):1256-67.

DOI: 10.1016/J.JMA.2020.09.028

Google Scholar

[29] Yan S, Hou C, Zhang A, Qi F. Influence of Al Addition on the Microstructure and Mechanical Properties of Mg-Zn-Sn-Mn-Ca Alloys. Materials. 2023 May 11;16(10):3664.

DOI: 10.3390/ma16103664

Google Scholar

[30] Hou C, Qi F, Ye Z, Zhao N, Zhang D, Ouyang X. Effects of Mn addition on the microstructure and mechanical properties of Mg–Zn–Sn alloys. Materials Science and Engineering: A. 2020 Feb 13; 774:138933.

DOI: 10.1016/j.msea.2020.138933

Google Scholar

[31] Roh HJ, Park J, Lee SH, Kim DH, Lee GC, Jeon H, Chae M, Lee KS, Sun JY, Lee DH, Han HS. Optimization of the clinically approved Mg-Zn alloy system through the addition of Ca. Biomaterials research. 2022 Sep 5;26(1):41.

DOI: 10.1186/s40824-022-00283-5

Google Scholar

[32] Incesu A, Gungor A. Mechanical properties and biodegradability of Mg–Zn–Ca alloys: homogenization heat treatment and hot rolling. Journal of Materials Science: Materials in Medicine. 2020 Dec; 31:1-2.

DOI: 10.1007/s10856-020-06468-5

Google Scholar

[33] Zhao Y, Jin Y, Bao Y. Effect of process parameters on porosity defects in Al-Si alloy hot rolling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2023 Apr;237(5):770-8.

DOI: 10.1177/09544054221111905

Google Scholar

[34] Kittner K, Ullmann M, Prahl U. Microstructural and Textural Investigation of an Mg-Zn-Al-Ca Alloy after Hot Plane Strain Compression. Materials. 2022 Oct 26;15(21):7499.

DOI: 10.3390/ma15217499

Google Scholar

[35] Li YQ, Xu DY, Zha M, Chen DF, Liu YT, Li MJ, Sun K, Zhu GJ, Wang SQ, Wang T, Gao JB. Study on Bulk Texture and Mechanical Properties of As-Extruded Wide Mg-Al-Zn Alloy Sheets with Different Al Addition. Materials. 2022 Jun 10;15(12):4147.

DOI: 10.3390/ma15124147

Google Scholar

[36] Ji X, Tian Q, Tan Y, Huang C, Wan M, Li R. Simulation and Experimental Study of Hot Deformation Behavior in Near β Phase Region for TC21 Alloy with a Forged Structure. Crystals. 2023 Oct 20;13(10):1524.

DOI: 10.3390/cryst13101524

Google Scholar

[37] Kittner K, Ullmann M, Arndt F, Kawalla R, Prahl U. Microstructure and texture evolution during twin-roll casting and annealing of a Mg–6.8 Y2. 5Zn–0.4 Zr Alloy (WZ73). Crystals. 2020 Jun 16;10(6):513.

DOI: 10.3390/cryst10060513

Google Scholar

[38] Du Y, Du W, Zhang D, Ge Y, Jiang B. Enhancing mechanical properties of an Mg–Zn–Ca alloy via extrusion. Materials Science and Technology. 2021 Apr;37(6):624-31.

DOI: 10.1080/02670836.2021.1938861

Google Scholar

[39] Lu X, Zhao G, Zhou J, Zhang C, Yu J. Microstructure and mechanical properties of the as-cast and as-homogenized Mg-Zn-Sn-Mn-Ca alloy fabricated by semicontinuous casting. Materials. 2018 Apr 29;11(5):703.

DOI: 10.3390/ma11050703

Google Scholar

[40] Deng B, Dai Y, Lin J, Zhang D. Effect of rolling treatment on microstructure, mechanical properties, and corrosion properties of WE43 alloy. Materials. 2022 Jun 3;15(11):3985.

DOI: 10.3390/ma15113985

Google Scholar

[41] Zhu N, Sun CY, Li YL, Qian LY, Hu SY, Cai Y, Feng Y. Modeling discontinuous dynamic recrystallization containing second phase particles in magnesium alloys utilizing phase field method. Computational Materials Science. 2021 Dec 1; 200:110858.

DOI: 10.1016/j.commatsci.2021.110858

Google Scholar

[42] Wu T, Zhang K. Corrosion and protection of magnesium alloys: Recent advances and future perspectives. Coatings. 2023 Sep 1;13(9):1533.

DOI: 10.3390/coatings13091533

Google Scholar

[43] Vinogradov A, Merson E, Myagkikh P, Linderov M, Brilevsky A, Merson D. Attaining high functional performance in biodegradable Mg-alloys: an overview of challenges and prospects for the Mg-Zn-Ca system. Materials. 2023 Feb 3;16(3):1324.

DOI: 10.3390/ma16031324

Google Scholar

[44] Liu G, Xu J, Feng B, Liu J, Qi D, Huang W, Yang P, Zhang S. Comparison of corrosion performance of extruded and forged WE43 Mg alloy. Materials. 2022 Feb 22;15(5):1622.

DOI: 10.3390/ma15051622

Google Scholar

[45] Guo Y, Wang Y, Jiang B, Chen H, Xu H, Hu M, Ji Z. Microstructure evolution, thermal conductivity and mechanical properties of hot-rolling Al–Si–Fe–Mg alloy under different reductions. Modern Physics Letters B. 2022 Jan 10;36(01):2150533.

DOI: 10.1142/S0217984921505333

Google Scholar

[46] Lebea L, Ngwangwa HM, Desai DA, Nemavhola F. Corrosion Resistance of 3D‐Printed Titanium Alloy Ti64‐ELI Parts for Dental Application. Applied Bionics and Biomechanics. 2022;2022(1):1804417.

DOI: 10.1155/2022/1804417

Google Scholar

[47] Zengin H, Turen Y, Ahlatci H, Sun Y, Kara IH. Microstructure and corrosion properties of homogenized Mg-4Zn-1La magnesium alloy. Key Engineering Materials. 2017 Sep 25; 750:118-23.

DOI: 10.4028/www.scientific.net/KEM.750.118

Google Scholar

[48] Behera M, Shabadi R, Gruescu C. Engineering Corrosion Resistance in Magnesium Alloys for Biomedical Applications: A Synergy of Zn/Ca Atomic Ratio and Texture-Based Approach. Metals. 2024 Sep 2;14(9):1002.

DOI: 10.3390/met14091002

Google Scholar

[49] Choudhary S, Garg A, Mondal K. Relation between open circuit potential and polarization resistance with rust and corrosion monitoring of mild steel. Journal of Materials Engineering and Performance. 2016 Jul; 25:2969-76.

DOI: 10.1007/s11665-016-2112-6

Google Scholar

[50] Mayén J, Hernández-Hernández M, Del Carmen Gallegos-Melgar A, Pereyra I, Barredo E, Abundez-Pliego A, Porcayo-Calderón J. Statistical analysis of corrosion current density and tensile strength of Al-6061 alloy by ageing and retrogression heat treatments. Transactions of the Indian Institute of Metals. 2022 Oct;75(10):2725-35.

DOI: 10.1007/s12666-022-02638-x

Google Scholar

[51] Kumrular B, Cicek O, Dağ İE, Avar B, Erener H. Evaluation of the corrosion resistance of different types of orthodontic fixed retention appliances: A preliminary laboratory study. Journal of Functional Biomaterials. 2023 Jan 31;14(2):81.

DOI: 10.3390/jfb14020081

Google Scholar

[52] Jiang J, Geng X, Zhang X. Stress corrosion cracking of magnesium alloys: A review. Journal of Magnesium and Alloys. 2023 Jun 26.

DOI: 10.1016/j.jma.2023.05.011

Google Scholar

[53] Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Advanced engineering materials. 1999 Sep;1(1):11-33.

Google Scholar

[54] Wei L, Gao Z. Recent research advances on corrosion mechanism and protection, and novel coating materials of magnesium alloys: a review. RSC advances. 2023;13(12):8427-63.

DOI: 10.1039/D2RA07829E

Google Scholar

[55] Zhang L, Huang Y, Wu M, Xu C, Ning Z, Cao F, Sun J. Intermediate-Temperature Tensile Behavior of a Hot-Rolled Mg-Li-Al-Cd-Zn Alloy. Materials. 2022 Feb 24;15(5):1686.

DOI: 10.3390/ma15051686

Google Scholar

[56] Chai F, Ma Z, Han X, Hu X, Chang Z, Zhou J. Effect of strain rates on mechanical behavior, microstructure evolution and failure mechanism of extruded-annealed AZ91 magnesium alloy under room-temperature tension. Journal of Materials Research and Technology. 2023 Nov 1; 27:4644-56.

DOI: 10.1016/j.jmrt.2023.11.005

Google Scholar

[57] Ang HQ, Abbott TB, Zhu S, Easton M. Effect of strain rate on mechanical behaviour of commercial die-cast magnesium alloys. Materials Science and Technology. 2017 Jan 1.

DOI: 10.7449/2017/MST_2017_164_170

Google Scholar

[58] Noradila AL, Sajuri Z, Syarif J, Miyashita Y, Mutoh Y. Effect of strain rates on tensile and work hardening properties for Al-Zn magnesium alloys. InIOP Conference Series: Materials Science and Engineering 2013 Jun 6 (Vol. 46, No. 1, p.012031). IOP Publishing.

DOI: 10.1088/1757-899X/46/1/012031

Google Scholar