[1]
X. Huang, S. Su, Z. Xu, Q. Miao, W. Li, and L. Wang, Advanced composite materials for structure strengthening and resilience improvement, Buildings, 13 (2023) p.2406.
DOI: 10.3390/buildings13102406
Google Scholar
[2]
N. Shehata, O.A. Mohamed, E. T. Sayed, M. A. Abdelkareem, and A. G. Olabi, Geopolymer concrete as green building materials: Recent applications, sustainable development and circular economy potentials, Sci. Total Environ, 836 (2022).
DOI: 10.1016/j.scitotenv.2022.155577
Google Scholar
[3]
Sangmesh et al., Development of sustainable alternative materials for the construction of green buildings using agricultural residues: A review Constr. Build. Mater. 368 (2023) p.130457.
Google Scholar
[4]
A.M. Zeyad, Sustainable concrete Production: Incorporating recycled wastewater as a green building material, Constr. Build. Mater.407 (2023) p.133522.
DOI: 10.1016/j.conbuildmat.2023.133522
Google Scholar
[5]
I. Shah, L. Jing, Z.M. Fei, Y.S. Yuan, M.U. Farooq, and N. Kanjana, A review on chemical modification by using sodium hydroxide (NaOH) to investigate the mechanical properties of sisal, coir and hemp fiber reinforced concrete composites, J. Nat. Fibers, 19 (2022) pp.5133-5151.
DOI: 10.1080/15440478.2021.1875359
Google Scholar
[6]
M. Alhijazi, B. Safaei, Q. Zeeshan, M. Asmael, A. Eyvazian, and Z. Qin, Recent developments in Luffa natural fiber composites: Review, Sustainability, 12, (2020) p.7683.
DOI: 10.3390/su12187683
Google Scholar
[7]
S. Zidi and I. Miraoui, Mechanical and morphological analysis of cellulose extracted from sisal fibers and their effect on bio-based composites mechanical properties, Funct. Compos. Struct. 6, (2024) p.015008.
DOI: 10.1088/2631-6331/ad2fe5
Google Scholar
[8]
S. Zidi and I. Miraoui, Characterization of Bio-Composite Material Based on Alkali-Sisal Fibers: An Experimental Study, in Springer Proceedings in Physics, Springer Nature Singapore, (2024) pp.13-24.
DOI: 10.1007/978-981-97-3530-3_2
Google Scholar
[9]
H. Koruk and G. Genc, Investigation of the acoustic properties of bio luffa fiber and composite materials, Mater. Lett. 157 (2015) pp.166-168.
DOI: 10.1016/j.matlet.2015.05.071
Google Scholar
[10]
J.S.N. Raju, M.V. Depoures, and P. Kumaran, Comprehensive characterization of raw and alkali (NaOH) treated natural fibers from Symphirema involucratum stem, Int. J. Biol. Macromol. 186 (2021) pp.886-896.
DOI: 10.1016/j.ijbiomac.2021.07.061
Google Scholar
[11]
Z. Liu et al., Preparation of hydrophilic luffa sponges and their water absorption performance, Carbohydr. Polym., vol. 147, pp.178-187, 2016.
Google Scholar
[12]
S.R. Djafari Petroudy, J. Shojaeiarani, and B. Chabot, Recent advances in isolation, characterization, and potential applications of nanocellulose-based composites: A comprehensive review, J. Nat. Fibers 20, (2023) pp.1-34.
DOI: 10.1080/15440478.2022.2146830
Google Scholar
[13]
S. Zidi and I. Miraoui, Enhancing Opuntia ficus-indica fibers properties through alkaline treatment: Mechanical, thermal, and chemical characterization, Chem. Afr. 7 (2024) pp.799-811.
DOI: 10.1007/s42250-023-00801-5
Google Scholar
[14]
P. Jagadeesh, M. Puttegowda, S. Mavinkere Rangappa, and S. Siengchin, A review on extraction, chemical treatment, characterization of natural fibers and its composites for potential applications, Polym. Compos., vol. 42, no. 12, pp.6239-6264, 2021.
DOI: 10.1002/pc.26312
Google Scholar
[15]
X. Huang, S. Su, Z. Xu, Q. Miao, W. Li, and L. Wang, Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites, Advanced composite materials for structure strengthening and resilience improvement, Advanced composite materials for structure strengthening and resilience improvement (2012) pp.5133-5151.
DOI: 10.3390/buildings13102406
Google Scholar
[16]
S. Zidi and I. Miraoui, Cellulose Extraction from Sisal Fibers and Thermo-Chemical Characterization for Sustainable Industrial Applications, Science & Technology Asia (2024) pp.112-122.
Google Scholar
[17]
S. Helaili, A. Guizani, M. A. Khadimallah, and M. Chafra, Natural cellulosic Alfa fiber (Stipa tenacissima L.) improved with environment-friendly treatment cementitious composites with a stable flexural strength, Civ. Eng. Arch (2023) 11 pp.1632-1644.
DOI: 10.13189/cea.2023.110341
Google Scholar
[18]
S. Ajouguim, J. Page, C. Djelal, M. Waqif, and L. Saâdi, Impact of Alfa fibers morphology on hydration kinetics and mechanical properties of cement mortars, Constr. Build. Mater. 293 (2021) p.123514.
DOI: 10.1016/j.conbuildmat.2021.123514
Google Scholar
[19]
S. Ajouguim, J. Page, C. Djelal, and L. Saâdi, Effect of treated Alfa fibers on hydration kinetics, mechanical, and adhesion properties of fiber cement composite, J. Build. Eng. (2023) p.106558.
DOI: 10.1016/j.jobe.2023.106558
Google Scholar
[20]
S. Zidi, I. Miraoui, and Y. Moussaoui, Optimized integration of Opuntia ficus-indica fibers for improved performance in plaster-based composites, Multiscale Multidiscip. Model. Exp. Des., 2024.
DOI: 10.1007/s41939-024-00518-z
Google Scholar
[21]
B. Bahja, A. Elouafi, A. Tizliouine, and L. H. Omari, Morphological and structural analysis of treated sisal fibers and their impact on mechanical properties in cementitious composites, J. Build. Eng.34 (2021) p.102025.
DOI: 10.1016/j.jobe.2020.102025
Google Scholar
[22]
M. G. Veigas, M. Najimi, and B. Shafei, Cementitious composites made with natural fibers: Investigation of uncoated and coated sisal fibers, Case Stud. Constr. Mater. 16 (2022) p. e00788.
DOI: 10.1016/j.cscm.2021.e00788
Google Scholar
[23]
A. Filho, S. Parveen, S. Rana, R. Vanderlei, and R. Fangueiro, Mechanical and micro-structural investigation of multi-scale cementitious composites developed using sisal fibres and microcrystalline cellulose, Ind, Ind. Crops Prod 158 (2020) 112912.
DOI: 10.1016/j.indcrop.2020.112912
Google Scholar
[24]
M. Ramesh, C. Deepa, and A. Ravanan, Bamboo fiber reinforced concrete composites, in Bamboo Fiber Composites, Singapore: Springer Singapore, (2021) pp.127-145.
DOI: 10.1007/978-981-15-8489-3_8
Google Scholar
[25]
M. A. S. Alencar et al., Feasibility study of incorporation of bamboo plant fibers in cement matrices, Sustainable Chemistry for the Environment 2 (2023)100020, p.100020.
DOI: 10.1016/j.scenv.2023.100020
Google Scholar
[26]
J. Ahmad, Z. Zhou, and A. F. Deifalla, Structural properties of concrete reinforced with bamboo fibers: a review, J. Mater. Res. Technol. 24 (2023) pp.844-865.
DOI: 10.1016/j.jmrt.2023.03.038
Google Scholar
[27]
Y. Ban et al., Preparation and performance of cement mortar reinforced by modified bamboo fibers, Polymers (Basel) 12 (2020) 2650.
DOI: 10.3390/polym12112650
Google Scholar
[28]
N. Premalatha, S. S. Saravanakumar, M. R. Sanjay, S. Siengchin, and A. Khan, Structural and thermal properties of chemically modified Luffa cylindrica fibers, J. Nat. Fibers 7 (2021) 1037- 1043.
DOI: 10.1080/15440478.2019.1678546
Google Scholar
[29]
K.G. Ashok, K. Kalaichelvan, and A. Damodaran, Effect of nano fillers on mechanical properties of Luffa fiber epoxy composites, J. Nat. Fibers19 (2022) 1472-1489.
DOI: 10.1080/15440478.2020.1779898
Google Scholar
[30]
D. Cheng et al., Characterization of potential cellulose fiber from Luffa vine: A study on physicochemical and structural properties, Int. J. Biol. Macromol.164 (2020) 2247-2257.
DOI: 10.1016/j.ijbiomac.2020.08.098
Google Scholar
[31]
S. Zidi, I. Miraoui, and S. Jaballi, Investigation of sisal fiber cords impact to improve the mechanical properties of plaster-based composites, Euro-Mediterr. J. Environ. Integr. 9 (2024) pp.579-590.
DOI: 10.1007/s41207-024-00502-6
Google Scholar
[32]
A. Belaadi, A. Bezazi, M. Bourchak, and F. Scarpa, Tensile static and fatigue behaviour of sisal fibres, Mater. Eng.46 (2013) 76-83.
DOI: 10.1016/j.matdes.2012.09.048
Google Scholar
[33]
H. Xu et al., Mechanical properties variation in wood-plastic composites with a mixed wood fiber size, Materials (Basel) 16 (2023) 5801.
DOI: 10.3390/ma16175801
Google Scholar
[34]
A. E. Hadi et al., Application of micromechanical modelling for the evaluation of elastic moduli of hybrid woven jute-ramie reinforced unsaturated polyester composites, Polymers (Basel) 13 (2021) 2572.
DOI: 10.3390/polym13152572
Google Scholar
[35]
T. Khan, M. T. B. Hameed Sultan, and A. H. Ariffin, The challenges of natural fiber in manufacturing, material selection, and technology application: A review, J. Reinf. Plast. Compos. 37 (2018) 770-779.
DOI: 10.1177/0731684418756762
Google Scholar
[36]
M. Bouakba, A. Bezazi, K. Boba, F. Scarpa, and S. Bellamy, Cactus fibre/polyester biocomposites: Manufacturing, quasi-static mechanical and fatigue characterisation, Compos, Compos. Sci. Technol 74 (2013) 150-159.
DOI: 10.1016/j.compscitech.2012.10.009
Google Scholar
[37]
H. Schwager, T. Haushahn, C. Neinhuis, T. Speck, and T. Masselter, Principles of branching morphology and anatomy in arborescent monocotyledons and columnar cacti as concept generators for branched fiber-reinforced composites, Adv. Eng. Mater. 12 (2010) B695-B698.
DOI: 10.1002/adem.201080057
Google Scholar