Development of a Smart Farming Monitoring System Using IoT and Android Technology to Support Precision Farming in the Western Part of Aceh

Article Preview

Abstract:

This paper presents the development and testing of a smart farming monitoring system utilizing Internet of Things (IoT) and Android technologies to support precision farming practices in Aceh. The system integrates multiple sensors, including DHT11 for temperature and humidity measurement, and soil moisture sensors, all controlled by ESP32 microcontrollers. These components wirelessly transmit real-time data to an Android application, allowing farmers to monitor environmental conditions on their farms remotely. The system was tested at the Universitas Teuku Umar (UTU) farm, where sensor accuracy was validated by comparing the results with external instruments. Linear regression analysis was applied to assess the correlation between sensor data and the external measurements, yielding strong correlations and confirming system reliability. The results demonstrate that the IoT-based monitoring system provides precise and real-time environmental data, offering a valuable tool for decision-making in precision farming. Future directions for the system include expanding its functionalities by integrating additional sensors, improving the Android interface, and exploring predictive analytics through machine learning.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-79

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BPS Aceh, "Produk Domistik Regional Bruto Provinsi Aceh Menurut Lapangan Usaha Triwulan I 2024," 2024.

Google Scholar

[2] E. M. de Olde and V. Valentinov, "The Moral Complexity of Agriculture: A Challenge for Corporate Social Responsibility," J Agric Environ Ethics, vol. 32, no. 3, p.413–430, Jun. 2019.

DOI: 10.1007/s10806-019-09782-3

Google Scholar

[3] B. Talukder, A. Blay-Palmer, G. W. vanLoon, and K. W. Hipel, "Towards complexity of agricultural sustainability assessment: Main issues and concerns," Environmental and Sustainability Indicators, vol. 6, p.100038, Jun. 2020.

DOI: 10.1016/J.INDIC.2020.100038

Google Scholar

[4] Y. V. K. D. Bhavani, Dr. S. M. Hatture, Dr. V. B. Pagi, and Dr. S. V. Saboji, "An Analytical Review on Traditional Farming and Smart Farming: Various Technologies around Smart Farming," SSRN Electronic Journal, Mar. 2023.

DOI: 10.2139/SSRN.4381020

Google Scholar

[5] V. Kumar, K. V. Sharma, N. Kedam, A. Patel, T. R. Kate, and U. Rathnayake, "A comprehensive review on smart and sustainable agriculture using IoT technologies," Smart Agricultural Technology, vol. 8, p.100487, Aug. 2024.

DOI: 10.1016/J.ATECH.2024.100487

Google Scholar

[6] N. Khan, R. L. Ray, G. R. Sargani, M. Ihtisham, M. Khayyam, and S. Ismail, "Current Progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture," Sustainability 2021, Vol. 13, Page 4883, vol. 13, no. 9, p.4883, Apr. 2021.

DOI: 10.3390/SU13094883

Google Scholar

[7] S. M. Pedersen and K. M. Lind, Eds., "Precision Agriculture: Technology and Economic Perspectives," 2017.

DOI: 10.1007/978-3-319-68715-5

Google Scholar

[8] L. Colizzi et al., "Introduction to agricultural IoT," Agricultural Internet of Things and Decision Support for Precision Smart Farming, p.1–33, Jan. 2020.

DOI: 10.1016/B978-0-12-818373-1.00001-9

Google Scholar

[9] J. Xu, B. Gu, and G. Tian, "Review of agricultural IoT technology," Artificial Intelligence in Agriculture, vol. 6, p.10–22, Jan. 2022.

DOI: 10.1016/J.AIIA.2022.01.001

Google Scholar

[10] V. K. Quy et al., "IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges," Applied Sciences 2022, Vol. 12, Page 3396, vol. 12, no. 7, p.3396, Mar. 2022.

DOI: 10.3390/APP12073396

Google Scholar

[11] S. Atalla et al., "IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management," Information 2023, Vol. 14, Page 205, vol. 14, no. 4, p.205, Mar. 2023.

DOI: 10.3390/INFO14040205

Google Scholar

[12] S. Rajagopal and V. Krishnamurthy, "OO design for an IoT based automated plant watering system," International Conference on Computer, Communication, and Signal Processing: Special Focus on IoT, ICCCSP 2017, Jun. 2017.

DOI: 10.1109/ICCCSP.2017.7944101

Google Scholar

[13] "Analisa Dan Simulasi Efesiensi Energi Listrik PT. XYZ Dengan Menggunakan Regresi Linier," RELE (Rekayasa Elektrikal dan Energi) : Jurnal Teknik Elektro, vol. 5, no. 2, Jan. 2023.

DOI: 10.30596/RELE.V5I2.13085

Google Scholar

[14] E. Navarro, N. Costa, and A. Pereira, "A Systematic Review of IoT Solutions for Smart Farming," Sensors 2020, Vol. 20, Page 4231, vol. 20, no. 15, p.4231, Jul. 2020.

DOI: 10.3390/S20154231

Google Scholar

[15] M. S. Farooq, S. Riaz, A. Abid, K. Abid, and M. A. Naeem, "A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming," IEEE Access, vol. 7, p.156237–156271, 2019.

DOI: 10.1109/ACCESS.2019.2949703

Google Scholar

[16] S. V. S. Ramakrishnam Raju, B. Dappuri, P. Ravi Kiran Varma, M. Yachamaneni, D. M. G. Verghese, and M. K. Mishra, "Design and Implementation of Smart Hydroponics Farming Using IoT-Based AI Controller with Mobile Application System," J Nanomater, vol. 2022, no. 1, p.4435591, Jan. 2022.

DOI: 10.1155/2022/4435591

Google Scholar

[17] M. M. Munyao, E. M. Maina, S. M. Mambo, and A. Wanyoro, "Real-time pre-eclampsia prediction model based on IoT and machine learning," Discover Internet of Things, vol. 4, no. 1, p.1–25, Dec. 2024.

DOI: 10.1007/s43926-024-00063-8

Google Scholar

[18] Ó. P. Alvear Alvear, "Mobile Sensing Architecture for Air Pollution Monitoring," Sep. 2018.

DOI: 10.4995/THESIS/10251/107928

Google Scholar

[19] R. N. Athirah, C. Y. N. Norasma, and M. R. Ismail, "Development of an Android Application for Smart Farming in Crop Management," IOP Conf Ser Earth Environ Sci, vol. 540, no. 1, p.12074, Jul. 2020.

DOI: 10.1088/1755-1315/540/1/012074

Google Scholar

[20] N. Z. Pratama, T. Rismawan, and S. Suhardi, "Penerapan Metode Regresi Linear Pada Sistem Peringatan Dini Banjir Berbasis Internet of Things (IoT)," JURIKOM (Jurnal Riset Komputer), vol. 9, no. 5, p.1414, Oct. 2022.

DOI: 10.30865/jurikom.v9i5.4849

Google Scholar

[21] A. Luthfiarta, A. Febriyanto, H. Lestiawan, and W. Wicaksono, "Analisis Sistem Monitoring Berbasis Internet of Things pada Rancang Bangun Weather Stasion di Politeknik Negeri Jakarta," Prosiding Seminar Nasional Teknik Mesin, vol. 5, no. 1, p.638–642, Dec. 2022.

DOI: 10.33633/JOINS.V5I1.2760

Google Scholar

[22] R. J. Lascano, T. S. Goebel, J. Booker, J. T. Baker, and D. C. Gitz III, "The Stem Heat Balance Method to Measure Transpiration: Evaluation of a New Sensor," Agricultural Sciences, vol. 07, no. 09, p.604–620, 2016.

DOI: 10.4236/as.2016.79057

Google Scholar

[23] U. Hasanah et al., "Preparation and characterization of a pectin membrane-based optical pH sensor for fish freshness monitoring," Biosensors (Basel), vol. 9, no. 2, Jun. 2019.

DOI: 10.3390/bios9020060

Google Scholar

[24] Fitri Puspasari, Trias Prima Satya, Unan Yusmaniar Oktiawati, Imam Fahrurrozi, and Hristina Prisyanti, "Analisis Akurasi Sistem Sensor DHT22 berbasis Arduino terhadap Thermohygrometer Standar," Jurnal Fisika dan Aplikasinya, vol. 16, no. 1, p.33, Feb. 2020.

DOI: 10.12962/j24604682.v16i1.5717

Google Scholar