Air Entrainment by Infrared Suppressors: A Brief Review on Current Practices

Article Preview

Abstract:

Infrared suppression devices are one of the vital components of naval or cargo-ships, as they entrain the cold ambient air, and mix with hot exhaust gas from silencer cooling down the outgoing gas. By doing this, the overall temperature of the outgoing gas is reduced exhibiting a low infrared (IR) emission and concealing the ship from the ease of dictation by enemy ship. The host ship avoids the potential threat and safely operates during a mission operation. This paper is aimed at providing a brief review on the different infrared suppression devices, which are used in naval or cargo ships to reduce their detectability in a sea chest in a war-like situation. This article may help the researchers and designers as first-hand information and current practices used in designing infrared suppression device (IRS) devices for naval and cargo ships.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-114

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. A. Schleijpen Evaluation of infrared-signature suppression of ships, In: Proceedings of SPIE 2742, targets and backgrounds: characterization and representation II; 1996.

DOI: 10.1117/12.243002

Google Scholar

[2] S. P. Mahulikar, G. A. Rao, P.S. Kolhe, Infrared signatures of low flying aircraft and their rear fuselage skin's emissivity optimization, Journal of Aircraft, Vol. 43(1), pp.226-32, 2006.

DOI: 10.2514/1.15365

Google Scholar

[3] Engelhardt, M., Apparatus and Method for Electrical Heating of Aircraft Skin for Background Matching, US Patent no. 4801113, 1989.

Google Scholar

[4] R. F. Reynolds, M. J. Kinsell, Thermal and Visual Camouflage System, US Patent no. 6338292 B1, 2002.

Google Scholar

[5] J. L. Means, L. C. Grace, Suppression of thermal emission from exhaust components using an integrated approach, In: Proceedings of the ground target modeling and validation conference, houghton, Michigan; 2002.

Google Scholar

[6] A.K. Barik, S. K. Dash, A. Guha, Experimental and numerical investigation of air entrainment into an infrared suppression device, Applied Thermal Engineering, Vol.75, pp.33-44, 2015.

DOI: 10.1016/j.applthermaleng.2014.05.042

Google Scholar

[7] A.Barik, S. K. Dash, P. Patro, S. Mohapatra, Experimental and numerical investigation of air entrainment into a louvred funnel, Applied Ocean Research, Vol. 48, pp.176-185, 2014.

DOI: 10.1016/j.apor.2014.08.009

Google Scholar

[8] V.R. Ganguly, S. K. Dash, Experimental and numerical study of air entrainment into a louvered conical IRS device and comparison with existing IRS devices, International Journal of Thermal Sciences, Vol. 141, pp.114-132, 2019.

DOI: 10.1016/j.ijthermalsci.2019.03.034

Google Scholar

[9] A.K. Barik, S. K. Dash, A. Guha, New correlation for prediction of air entrainment into an Infrared Suppression (IRS) device, Applied Ocean Research, Vol. 47, pp.303-312, 2014.

DOI: 10.1016/j.apor.2014.06.007

Google Scholar

[10] M.Rout, V. Chandrakar, A. Mukherjee, S. Ghosh, J. R. Senapati, Air entrainment study of converging-diverging type IRS device: A numerical excersise, International Journal of Thermal Sciences, Vol. 197, p.108822, 2022.

DOI: 10.1016/j.ijthermalsci.2023.108822

Google Scholar

[11] A.Mukherjee, J. R. Senapati, S. K. Rathore, A. K. Barik, Comparative assessment of different turbulence models to estimate thermos-fluid characteristics of an infrared suppression (IRS) device, ASME Journal of Heat Transfer, Vol. 144, p.073501, 2022.

DOI: 10.1115/1.4054415

Google Scholar

[12] M.V.S. N. Anavilla, S. V. Kambagowni, R. B. Vepakomma, Design and Validation of Diesel Engine Infrared Signature Suppression Devi ces for Naval Ships, J. Inst. Eng. Ser. C, 100(5), p.717–727, 2019.

DOI: 10.1007/s40032-019-00525-x

Google Scholar

[13] L.Singh, S. N. Singh, S.S. Sinha, Effect of Reynolds number and slot guidance on passive infrared suppression, Aerospace Science and Technology, Vol. 99, p.105732, 2020.

DOI: 10.1016/j.ast.2020.105732

Google Scholar

[14] L.Singh, S. N. Singh, S.S. Sinha, Effect of slot-guidance and slot area on air entrainment in a conical ejector diffusor for infrared suppression, Journal of Applied fluid Mechanics, Vol.12(4), pp.1303-1318, 2018.

DOI: 10.29252/jafm.12.04.29326

Google Scholar

[15] V. Chandrakar, J. R. Senapati, Numerical investigation of flow and heat transfer characteristics of a full scale infrared suppression device with cylindrical funnels, International Journal of Thermal Sciences, Vol. 153, p.106355, 2020.

DOI: 10.1016/j.ijthermalsci.2020.106355

Google Scholar

[16] S.K. Mishra, A. K. Barik, P. K. Swain, Air entrainment and outlet temperature characteristics of a modified infrared suppression device withy inward and outward guides, ASME Journal of Thermal Science and Engineering Applications, Vol. 14, p.121006, 2022.

DOI: 10.1115/1.4055068

Google Scholar

[17] S.K. Mishra, A. K. Barik, Numerical investigation of air entrainment and outlet temperature characteristics of a convex-type infrared suppression device, ASME Journal of Heat Transfer, Vol. 144, p.122102.

DOI: 10.1115/1.4055517

Google Scholar

[18] V.Chandrakar, A. Mukherjee, J. R. Senapati, A. Mohanty, Conjugate free convection with surface radiation from real-scale IRS system with multiple conical funnels, International Communications in Heat and Mass Transfer, Vol. 134, p.106004.

DOI: 10.1016/j.icheatmasstransfer.2022.106004

Google Scholar

[19] M.K. Dash, A. K. Barik, A computational study on air entrainment and pressure distribution for natural convection cooling of a hybrid IRS device, International Journal of Thermal Sciences, Vol.187, p.108196, 2023.

DOI: 10.1016/j.ijthermalsci.2023.108196

Google Scholar

[20] A. Mohanty, S. K. Senapati, S. K. Dash, Natural convection cooling of an infrared suppression device (IRS) with conical funnels- a computational approach, International Communications in Heat and Mass Transfer, Vol. 118, p.104891, 2020.

DOI: 10.1016/j.icheatmasstransfer.2020.104891

Google Scholar