[1]
H.M. A. Schleijpen Evaluation of infrared-signature suppression of ships, In: Proceedings of SPIE 2742, targets and backgrounds: characterization and representation II; 1996.
DOI: 10.1117/12.243002
Google Scholar
[2]
S. P. Mahulikar, G. A. Rao, P.S. Kolhe, Infrared signatures of low flying aircraft and their rear fuselage skin's emissivity optimization, Journal of Aircraft, Vol. 43(1), pp.226-32, 2006.
DOI: 10.2514/1.15365
Google Scholar
[3]
Engelhardt, M., Apparatus and Method for Electrical Heating of Aircraft Skin for Background Matching, US Patent no. 4801113, 1989.
Google Scholar
[4]
R. F. Reynolds, M. J. Kinsell, Thermal and Visual Camouflage System, US Patent no. 6338292 B1, 2002.
Google Scholar
[5]
J. L. Means, L. C. Grace, Suppression of thermal emission from exhaust components using an integrated approach, In: Proceedings of the ground target modeling and validation conference, houghton, Michigan; 2002.
Google Scholar
[6]
A.K. Barik, S. K. Dash, A. Guha, Experimental and numerical investigation of air entrainment into an infrared suppression device, Applied Thermal Engineering, Vol.75, pp.33-44, 2015.
DOI: 10.1016/j.applthermaleng.2014.05.042
Google Scholar
[7]
A.Barik, S. K. Dash, P. Patro, S. Mohapatra, Experimental and numerical investigation of air entrainment into a louvred funnel, Applied Ocean Research, Vol. 48, pp.176-185, 2014.
DOI: 10.1016/j.apor.2014.08.009
Google Scholar
[8]
V.R. Ganguly, S. K. Dash, Experimental and numerical study of air entrainment into a louvered conical IRS device and comparison with existing IRS devices, International Journal of Thermal Sciences, Vol. 141, pp.114-132, 2019.
DOI: 10.1016/j.ijthermalsci.2019.03.034
Google Scholar
[9]
A.K. Barik, S. K. Dash, A. Guha, New correlation for prediction of air entrainment into an Infrared Suppression (IRS) device, Applied Ocean Research, Vol. 47, pp.303-312, 2014.
DOI: 10.1016/j.apor.2014.06.007
Google Scholar
[10]
M.Rout, V. Chandrakar, A. Mukherjee, S. Ghosh, J. R. Senapati, Air entrainment study of converging-diverging type IRS device: A numerical excersise, International Journal of Thermal Sciences, Vol. 197, p.108822, 2022.
DOI: 10.1016/j.ijthermalsci.2023.108822
Google Scholar
[11]
A.Mukherjee, J. R. Senapati, S. K. Rathore, A. K. Barik, Comparative assessment of different turbulence models to estimate thermos-fluid characteristics of an infrared suppression (IRS) device, ASME Journal of Heat Transfer, Vol. 144, p.073501, 2022.
DOI: 10.1115/1.4054415
Google Scholar
[12]
M.V.S. N. Anavilla, S. V. Kambagowni, R. B. Vepakomma, Design and Validation of Diesel Engine Infrared Signature Suppression Devi ces for Naval Ships, J. Inst. Eng. Ser. C, 100(5), p.717–727, 2019.
DOI: 10.1007/s40032-019-00525-x
Google Scholar
[13]
L.Singh, S. N. Singh, S.S. Sinha, Effect of Reynolds number and slot guidance on passive infrared suppression, Aerospace Science and Technology, Vol. 99, p.105732, 2020.
DOI: 10.1016/j.ast.2020.105732
Google Scholar
[14]
L.Singh, S. N. Singh, S.S. Sinha, Effect of slot-guidance and slot area on air entrainment in a conical ejector diffusor for infrared suppression, Journal of Applied fluid Mechanics, Vol.12(4), pp.1303-1318, 2018.
DOI: 10.29252/jafm.12.04.29326
Google Scholar
[15]
V. Chandrakar, J. R. Senapati, Numerical investigation of flow and heat transfer characteristics of a full scale infrared suppression device with cylindrical funnels, International Journal of Thermal Sciences, Vol. 153, p.106355, 2020.
DOI: 10.1016/j.ijthermalsci.2020.106355
Google Scholar
[16]
S.K. Mishra, A. K. Barik, P. K. Swain, Air entrainment and outlet temperature characteristics of a modified infrared suppression device withy inward and outward guides, ASME Journal of Thermal Science and Engineering Applications, Vol. 14, p.121006, 2022.
DOI: 10.1115/1.4055068
Google Scholar
[17]
S.K. Mishra, A. K. Barik, Numerical investigation of air entrainment and outlet temperature characteristics of a convex-type infrared suppression device, ASME Journal of Heat Transfer, Vol. 144, p.122102.
DOI: 10.1115/1.4055517
Google Scholar
[18]
V.Chandrakar, A. Mukherjee, J. R. Senapati, A. Mohanty, Conjugate free convection with surface radiation from real-scale IRS system with multiple conical funnels, International Communications in Heat and Mass Transfer, Vol. 134, p.106004.
DOI: 10.1016/j.icheatmasstransfer.2022.106004
Google Scholar
[19]
M.K. Dash, A. K. Barik, A computational study on air entrainment and pressure distribution for natural convection cooling of a hybrid IRS device, International Journal of Thermal Sciences, Vol.187, p.108196, 2023.
DOI: 10.1016/j.ijthermalsci.2023.108196
Google Scholar
[20]
A. Mohanty, S. K. Senapati, S. K. Dash, Natural convection cooling of an infrared suppression device (IRS) with conical funnels- a computational approach, International Communications in Heat and Mass Transfer, Vol. 118, p.104891, 2020.
DOI: 10.1016/j.icheatmasstransfer.2020.104891
Google Scholar