[1]
J. Thompson, D. Vaitekunas, and A. M. Brik, IR Signature Suppression of Modern Naval Ships, ASNE 21st Century Combatant, Technology Symposium, 27-30 January 1998.
Google Scholar
[2]
L. Singh, S. N. Singh, S. N. Sinha, Effect of Slot-Guidance and Slot-Area on Air Entrainment in a Conical Ejector Diffuser for Infrared Suppression, Journal of Applied Fluid Mechanics, Vol. 12, No. 4, pp.1303-1318, 2019.
DOI: 10.29252/jafm.12.04.29326
Google Scholar
[3]
A. K. Barik, S. K. Dash, A. Guha, Experimental and numerical investigation of air entrainment into an infrared suppression device, Applied Thermal Engineering, Vol. 75, pp.33-44, 2015.
DOI: 10.1016/j.applthermaleng.2014.05.042
Google Scholar
[4]
A. K. Barik, S. K. Dash, A. Guha, New correlation for prediction of air entrainment into an Infrared Suppression (IRS) device, Applied Ocean Research, Vol. 47, pp.303-312, 2014.
DOI: 10.1016/j.apor.2014.06.007
Google Scholar
[5]
A. K. Barik, S. K. Dash, A. Guha, Entrainment of air into an infrared suppression (IRS) device using circular and non-circular multiple nozzle, Commuters and Fluids, Vol. 114, pp.26-38, 2015.
DOI: 10.1016/j.compfluid.2015.02.016
Google Scholar
[6]
A. K. Barik, S. K. Dash, P. Patro, S. Mohapatra, Experimental and numerical investigation of air entrainment into a louvered funnel, Applied Ocean Research, Vol. 48, pp.176-185, 2014.
DOI: 10.1016/j.apor.2014.08.009
Google Scholar
[7]
S. K. Mishra, A. K. Barik, P.K. Swain, Air entrainment and outlet temperature characteristics of a modified Infrared Suppression Device with inward and outward guides, ASME Journal of Thermal Science and Engineering Applications, Vol.14, pp.121006-1, 2022.
DOI: 10.1115/1.4055068
Google Scholar
[8]
S. K. Mishra, A. K. Barik, Numerical investigation of air entrainment and outlet temperature characteristics of a convex-type infrared suppression device, ASME Journal of Heat Transfer, Vol. 144(12), p.122102, 2022.
DOI: 10.1115/1.4055517
Google Scholar
[9]
M. K. Dash, A. K. Barik, A computational study on air-entrainment and pressure distribution for natural convection cooling of a hybrid IRS device, International Journal of Thermal Sciences, Vol. 187, p.108196.
DOI: 10.1016/j.ijthermalsci.2023.108196
Google Scholar
[10]
M. K. Dash, R. C. Mishra, A. K. Barik, R. K. Mallik, Numerical investigation of buoyancy-induced thermo-fluid characteristics of different types of infrared suppression (IRS) devices, International Communications in Heat and Mass Transfer, Vol. 138, p.106388, 2022.
DOI: 10.1016/j.icheatmasstransfer.2022.106388
Google Scholar
[11]
R. C. Mishra, A. K. Barik, R. K. Mallik, Numerical Investigation of air entrainment and outlet temperature characteristics of an infrared suppression device with obstacles, Applied Thermal Engineering, Vol. 257, p.124225, 2024.
DOI: 10.1016/j.applthermaleng.2024.124225
Google Scholar
[12]
R. C. Mishra, A. K. Barik, and R. K. Mallik, Numerical investigation of air entrainment and outlet temperature characteristics of an infrared suppression device with obstacles, Applied Thermal Engineering, Vol. 257, p.124225, 2024.
DOI: 10.1016/j.applthermaleng.2024.124225
Google Scholar
[13]
C. Akshay, S. Rath, S.K. Dash, Numerical investigation of mixed convection through an infrared-suppression (IRS) device, International Communications in Heat and Mass Transfer, Vol. 146, p.106933, 2023.
DOI: 10.1016/j.icheatmasstransfer.2023.106933
Google Scholar
[14]
G. Singh, T. Sundararajan, K. A. Bhaskaran, Mixing and Enhancement Characteristics of Circular and Noncircular Confined Jets, J. Fluids Eng. - Transactions of ASME, Vol. 125, pp.835-842, 2003.
DOI: 10.1115/1.1595676
Google Scholar
[15]
R. Pritchard, J. J. Guy, and N. E. Connor, N. E., Handbook of Industrial Gas utilization: Engineering Principles and Practice, John Wiley & Sons, 1977.
Google Scholar