Effect of the Size of Mixing Tube on Air Ingression by an Infrared Suppression (IRS) Device

Article Preview

Abstract:

Infrared suppression device is a critical component of the modern ships and fighter jets, as it passively entrains cold air to attenuate the infrared radiation. In this work, we varied non-dimensional length of the mixing tube in the range of 0.5 to 5 to investigate its impact on the air entrainment and overall outlet temperature. We solved the continuity, momentum and energy equations utilizing finite volume method of Ansys Fluent R 20, incorporating relevant boundary conditions. We observed that the air ingression increases with increasing the length of the mixing tube. We also observed that the outlet temperature continuously decreases with longer mixing tube. At non-dimensional mixing length of 5, the outlet temperature decreases by 23% as compared to the inlet temperature, which is very useful for practical design of IRS devices. Finally, the flow dynamics has been explained through the pressure and temperature contours supplemented by the velocity vectors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

115-122

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Thompson, D. Vaitekunas, and A. M. Brik, IR Signature Suppression of Modern Naval Ships, ASNE 21st Century Combatant, Technology Symposium, 27-30 January 1998.

Google Scholar

[2] L. Singh, S. N. Singh, S. N. Sinha, Effect of Slot-Guidance and Slot-Area on Air Entrainment in a Conical Ejector Diffuser for Infrared Suppression, Journal of Applied Fluid Mechanics, Vol. 12, No. 4, pp.1303-1318, 2019.

DOI: 10.29252/jafm.12.04.29326

Google Scholar

[3] A. K. Barik, S. K. Dash, A. Guha, Experimental and numerical investigation of air entrainment into an infrared suppression device, Applied Thermal Engineering, Vol. 75, pp.33-44, 2015.

DOI: 10.1016/j.applthermaleng.2014.05.042

Google Scholar

[4] A. K. Barik, S. K. Dash, A. Guha, New correlation for prediction of air entrainment into an Infrared Suppression (IRS) device, Applied Ocean Research, Vol. 47, pp.303-312, 2014.

DOI: 10.1016/j.apor.2014.06.007

Google Scholar

[5] A. K. Barik, S. K. Dash, A. Guha, Entrainment of air into an infrared suppression (IRS) device using circular and non-circular multiple nozzle, Commuters and Fluids, Vol. 114, pp.26-38, 2015.

DOI: 10.1016/j.compfluid.2015.02.016

Google Scholar

[6] A. K. Barik, S. K. Dash, P. Patro, S. Mohapatra, Experimental and numerical investigation of air entrainment into a louvered funnel, Applied Ocean Research, Vol. 48, pp.176-185, 2014.

DOI: 10.1016/j.apor.2014.08.009

Google Scholar

[7] S. K. Mishra, A. K. Barik, P.K. Swain, Air entrainment and outlet temperature characteristics of a modified Infrared Suppression Device with inward and outward guides, ASME Journal of Thermal Science and Engineering Applications, Vol.14, pp.121006-1, 2022.

DOI: 10.1115/1.4055068

Google Scholar

[8] S. K. Mishra, A. K. Barik, Numerical investigation of air entrainment and outlet temperature characteristics of a convex-type infrared suppression device, ASME Journal of Heat Transfer, Vol. 144(12), p.122102, 2022.

DOI: 10.1115/1.4055517

Google Scholar

[9] M. K. Dash, A. K. Barik, A computational study on air-entrainment and pressure distribution for natural convection cooling of a hybrid IRS device, International Journal of Thermal Sciences, Vol. 187, p.108196.

DOI: 10.1016/j.ijthermalsci.2023.108196

Google Scholar

[10] M. K. Dash, R. C. Mishra, A. K. Barik, R. K. Mallik, Numerical investigation of buoyancy-induced thermo-fluid characteristics of different types of infrared suppression (IRS) devices, International Communications in Heat and Mass Transfer, Vol. 138, p.106388, 2022.

DOI: 10.1016/j.icheatmasstransfer.2022.106388

Google Scholar

[11] R. C. Mishra, A. K. Barik, R. K. Mallik, Numerical Investigation of air entrainment and outlet temperature characteristics of an infrared suppression device with obstacles, Applied Thermal Engineering, Vol. 257, p.124225, 2024.

DOI: 10.1016/j.applthermaleng.2024.124225

Google Scholar

[12] R. C. Mishra, A. K. Barik, and R. K. Mallik, Numerical investigation of air entrainment and outlet temperature characteristics of an infrared suppression device with obstacles, Applied Thermal Engineering, Vol. 257, p.124225, 2024.

DOI: 10.1016/j.applthermaleng.2024.124225

Google Scholar

[13] C. Akshay, S. Rath, S.K. Dash, Numerical investigation of mixed convection through an infrared-suppression (IRS) device, International Communications in Heat and Mass Transfer, Vol. 146, p.106933, 2023.

DOI: 10.1016/j.icheatmasstransfer.2023.106933

Google Scholar

[14] G. Singh, T. Sundararajan, K. A. Bhaskaran, Mixing and Enhancement Characteristics of Circular and Noncircular Confined Jets, J. Fluids Eng. - Transactions of ASME, Vol. 125, pp.835-842, 2003.

DOI: 10.1115/1.1595676

Google Scholar

[15] R. Pritchard, J. J. Guy, and N. E. Connor, N. E., Handbook of Industrial Gas utilization: Engineering Principles and Practice, John Wiley & Sons, 1977.

Google Scholar