[1]
A. O. Melodi, and P. T. Ogunboyo, Power Distribution Problems on 11kV Feeder Networks in Akure Urban Load Environment, IEEE Xplore, (2013) 292-300.
DOI: 10.1109/nigercon.2013.6715668
Google Scholar
[2]
International Energy Agency (IEA), Energy efficiency 2021: Analysis and forecast to 2024. https://www.iea.org/reports/energy-efficiency-(2021).
Google Scholar
[3]
P. T. Ogunboyo, and A. O. Melodi, Investigation of Load Power Variation on Ilesha Electrical Distribution Feeder, Akure, Ondo State, Nigeria,'' European International Journal of Science and Technology (EIJST), Vol. 5, No. 7, (2016) 58-65, ISSN:2304-9693.
DOI: 10.4028/www.scientific.net/jera.37.52
Google Scholar
[4]
P. T. Ogunboyo, R. Tiako, and I. E. Davidson, Effectiveness of Dynamic Voltage Restorer for Unbalanced Voltage Mitigation and Voltage Profile Improvement in Secondary Distribution System, in Canadian Journal of Electrical and Computer Engineering, vol.42, no. 2, (2018) 105-115, Spring 2018.
DOI: 10.1109/CJECE.2018.2858841
Google Scholar
[5]
M.O. Oseni, Energy access in sub-Saharan Africa: Progress and challenges. Renewable Energy Journal, 14(2), (2019) 198–214.
Google Scholar
[6]
H.I. Mohammed, L.E. Ismaila, A. Ahmed, and O.F. Onifade, .An intelligent predictive model for electricity consumption in institutional buildings. International Journal of Computer Science and Technology, 10(3), (2019) 21–24.
Google Scholar
[7]
P. T. Ogunboyo, R. Tiako, and I. E. Davidson, .An Improvement of Voltage Unbalance in a Low Voltage 11/0.4 kV Electric Power distribution Network under 3-phase Unbalance Load Condition using Dynamic Voltage Restorer. IEEE Xplore, (2017) 126-131.
DOI: 10.1109/powerafrica.2017.7991211
Google Scholar
[8]
F. Magoulès, and H. Zhao, Machine learning approaches for energy consumption forecasting. Computational Intelligence in Energy Management, 5(1), (2016) 23–39.
Google Scholar
[9]
P. T. Ogunboyo, and O. Ogunlade, Stochastic Evaluation of Load Power System of Lines in Sub-Saharan Africa under Condition of Stability Advances in Science and Technology Journal, ISSN: 1662-0356, Vol. 154, ( 2024) 191-201.
DOI: 10.4028/p-gcup3t
Google Scholar
[10]
P. T. Ogunboyo, and M. O. Adegoke, Electrical Distribution Industry- Long Term Load Forecast on Ilesha Road 11kV Feeder, Akure, Ondo State, Nigeria, International Journal of Engineering Research in Africa, Vol. 37, (2018) 52-61.
DOI: 10.4028/www.scientific.net/jera.37.52
Google Scholar
[11]
C. K. Tang, Determinants of electricity consumption in Malaysian institutions. Journal of Energy Research, 12(1), (2019) 34–47.
Google Scholar
[12]
C. Deb, S. E. Lee, M. Santamouris, and T. Zhang, Forecasting cooling loads in institutional buildings: A data-driven approach. Energy and Buildings, 128, (2016) 601–613.
DOI: 10.1016/j.enbuild.2016.07.001
Google Scholar
[13]
P. T. Ogunboyo, and I. E. Davidson, Impact of DVR in Power Quality Disturbances Mitigation in Municipal Distribution Systems, IEEE Xplore, (2016) 1-6, 2025.https://ieeexplore.ieee.org/xp/conhome/.
Google Scholar
[14]
A. A. Ogundipe, F. A. Adebayo, and T. F. Odebiyi, Electricity consumption and economic growth in Nigeria. African Development Review, 28(3), (2016) 243–257.
DOI: 10.1111/1467-8268.12203
Google Scholar
[15]
M. Rahman, M. Masud, and P. Biswas, Prediction of electric energy consumption using recurrent neural networks. International Journal of Smartcare Home, 1(1), (2021) 23–34.
DOI: 10.21742/26531941.1.1.03
Google Scholar
[16]
G. V. Reddy, L.J. Aitha, and C. Poojitha, Electricity consumption prediction using machine learning.E3S Web of Conferences, 391, ( 2023) 01048.
DOI: 10.1051/e3sconf/202339101048
Google Scholar
[17]
L. J. Aitha, G. V. Reddy, and C. Poojitha, Electricity consumption prediction using machine learning.E3S Web of Conferences, 391, (2023) 01048.
DOI: 10.1051/e3sconf/202339101048
Google Scholar