A Compact Review on the Impacts of Integration of Large-Scale Renewable Energy Sources into Grid-Connected Power Systems

Article Preview

Abstract:

Consequent upon the inestimably magnificent rise in the necessity to considerably minimize the worrisome menace of global dependency on fossil fuels (such as coal, oil and gas), combat the pollution caused by green house gas emission emanating from same and lead a crusade against energy insecurity; the renewable energy sources (RES) became a panacea to the incessant imbalance between the ever- increasing demand and meagre supply of energy throughout the entire universe. Nevertheless, the output of RES is characterized with some unpleasant traits which include intermittency coupled with variability and unpredictability since it is largely constrained by annual weather pattern thereby inflicting a very severe injury on transient and steady state stability, reliability and profitability index. Thus, the certainty that this attributes do not only possess a gigantic capability to render synchronization futile but also initiate regular system collapse in the grid network cannot be over-emphasized, especially if the necessary precautionary measures are not taken into consideration. Therefore, this research work provides a compact review on the impacts of integration of large scale renewable energy sources into grid-connected power system. The methodology would involve an elucidative investigation of the associated benefits and obstacles after which possible mitigations to the challenges are accorded an extensive analysis while useful inferences are drawn meticulously leading to qualitative conclusions and useful recommendations from the results and findings so obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-138

Citation:

Online since:

February 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] BP (2024),: British Petroleum (2024). Statistical Review of World Energy, London, United Kingdom, June, 2024. Vol. 4, Issue 2, pp.3-4.

Google Scholar

[2] Breyer, C.; Lopez, G.; Bogdanov, D. and Laaksonen, P. (2024). The role of electricity-based Hydrogen in the emerging power-to-X economy. An International Journal of Hydrogen Energy 2024, 49, 351–359.

DOI: 10.1016/j.ijhydene.2023.08.170

Google Scholar

[3] Graham, E., Fulghum, N. and Altieri, K; (2025). Global Electricity Review (EMBER 2025). An International Journal of Energy. Pp 32.

Google Scholar

[4] Adepoju, G. A. and Komolafe, O. A. (2011). Analysis and Modelling of Static Synchronous Compesator (STATCOM). An International Journal of Applied Science and Technology, Vol. 36, iss. 105, pp.68-70.

Google Scholar

[5] Adetokun, B. B. And Morintth, C. M. ( 2021), Impacts Of Integration Of DFIG- Based Wind Energy Conversion System on Voltage Stability of Weak National Grids: Nigeria, A Case Study. An internatiomal Journal on Energy Reports, Vol. 7, pp.654-666.

DOI: 10.1016/j.egyr.2021.01.025

Google Scholar

[6] Ahmadi-Ahangar, R.; Plaum, F.; Haring, T.; Drovtar, I.; Korotko, T. and Rosin, A. (2024). Impacts of grid-scale battery systems on power system operation, case of Baltic region. IET Smart Grid 2024, 7, 101–119.

DOI: 10.1049/stg2.12142

Google Scholar

[7] Ahmad, T.; Saha, S.; Arif, M.T.; Haque, M.E.; Mendis, N.; Oo, A.M. (2020). Impacts of grid integration of Solar PV and Electric Vehicle on grid stability, power quality, and Energy Economics: A Review. IET Energy Syst. Integr. 2020, 2, 243–260.

DOI: 10.1049/iet-esi.2019.0047

Google Scholar

[8] Akinsooto, O.; Ogundipe, O.B. and Ikemba, S. (2024). Regulatory policies for enhancing grid stability through the integration of renewable energy and battery energy storage systems (BESS). International Journal of Frontline Research Revolution. 2024, 2, 022–044.

DOI: 10.56355/ijfrr.2024.2.2.0023

Google Scholar

[9] Aykut, E. and Alshuraida, I.(2024). Grid Integration Strategies for Optimizing Renewable Energy Deployment and Grid Resilience. Balk. J. Electr. Comput. Eng. 2024, 12, 247–254.

DOI: 10.17694/bajece.1529149

Google Scholar

[10] Ayodele, T. R., Ogunjuyigbe, A. S. Oladele, O. O. (2016). Improving the Transient Stability of Nigerian 330kV Transmission Network Using SVC. Nigerian Journal of Technology. Vol. 35, Issue 1, pp.157-163.

DOI: 10.4314/njt.v35i1.23

Google Scholar

[11] Barbosa, C. R. H., Sousa, M. C., Almeida, M. F. L., & Calili, R. F. (2022). Smart Manufacturing and Digitalization of Metrology: A Systematic Literature Review and a Research Agenda. Sensors, 22(16).

DOI: 10.3390/s22166114

Google Scholar

[12] Beck, T. R., Antohe, A., Cardellini, F., Cucoş, A., Fialova, E., Grossi, C., Hening, K., Jensen, J., Kastratović, D., Krivošík, M., Lobner, P., Luca, A., Maringer, F. J., Michielsen, N., Otahal, P. P. S., Quindós, L., Rábago, D., Sainz, C., Szűcs, L., … Wołoszczuk, K. (2021). The metrological traceability, performance and precision of european radon calibration facilities. International Journal of Environmental Research and Public Health, 18(22).

DOI: 10.3390/ijerph182212150

Google Scholar

[13] Center for Democracy and Development (2020) A Review of the Power Sector in Nigeria https://media.africaportal.org/documents /A_review_of_the_power_sector_in_Nigeria.pdf.

Google Scholar

[14] Chineke, T., & Igwiro, E. (2008). Urban and rural electrification: enhancing the energy sector in Nigeria using photovoltaic technology. African Journal of Science and Technology, Vol. 9, issue 1. PP 103-107.

Google Scholar

[15] Dahunsi, F., Melodi, A.O., Oyinlola-Abdullateef, A.O. and Ponle, A.A. (2022). Smart Grid Systems in Nigeria: Prespects, Issues, Challenges and Way Forward, Fuoye Journal of Engineering and Technology.

DOI: 10.46792/fuoyejet.v7i2.781

Google Scholar

[16] Daly, J.; Zheng, L.; Xuan, M.; Yang, Y.; De Rosa, M. and Pallonetto, F. (2023). Comparative Analysis of Forecasting Techniques for Electricity Wholesale Price Under High Penetration of Renewable Energy Systems. Institute of Engineering and Technology (IET) Conference Procedings, Vol. 2022, iss. 25.

DOI: 10.1049/icp.2023.0046

Google Scholar

[17] Desphande, M. V. (2015). Elements of Electrical Power Station Design. A text book On Power System Technology. p.148.

Google Scholar

[18] Emodi, N. V. (2016). Energy Policies for Sustainable Development Strategies: The Case of Nigeria (illustrated). Singapore: Springer Singapore.

Google Scholar

[19] Egila, A. E. and Diugwu, I. (2017). An Assessment of Renewable Energy Impact on Economic Development in Nigeria, International Engineering Conference (IEC, 2017), Federal University of Technology, Minna.

Google Scholar

[20] Golombek, R.; Lind, A., Ringkjob, H. and Seljom, P. (2022). The Role of Transmission and Energy Storage in European decarbonisation towards 2050. Energy. Vol, 239, part C., 122159.

DOI: 10.1016/j.energy.2021.122159

Google Scholar

[21] Gao, H.; Jin, T.; Feng, C.; Li, C.; Chen, Q. and Kang, C. (2024). Review of virtual power plant operations: Resource coordination and multidimensional interaction. Appl. Energy 2024, 357, 122284.

DOI: 10.1016/j.apenergy.2023.122284

Google Scholar

[22] Okoro, O., & Chikuni, E. (2007). Power sector reforms in Nigeria: opportunities and challenges. Journal of Energy in Southern Africa, 18(3), 52-57.

DOI: 10.17159/2413-3051/2007/v18i3a3386

Google Scholar

[23] Gunnarsdottir, B. Davidsdottir, E. Worrell, S. Sigurgeirsdottir, I. (2021). Sustainable Energy Development, History of the Concept and Emerging Themes. A Journal on Sustainable Energy Development. Vol.141.

DOI: 10.1016/j.rser.2021.110770

Google Scholar

[24] Guerra, C., Ospino, A. and Pena, R. (2023). Analysis of Impacts of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region.. an international Journal on Energy Report. Iss. 16, vol. 21, p.7260.

DOI: 10.3390/en16217260

Google Scholar

[25] Hannah, R., Max, R. and Pablo, R. (2020). Renewable Energy. International Journal Publishrd Online at OurworldInData.org.

Google Scholar

[26] IEA (2024), Global Electricity Generation by Source, 2014-2025, IEA, Paris https://www.iea.org/data-and-statistics/charts/global-electricity-generation-by-source-2014-2025, Licence: CC BY 4.0.

DOI: 10.1787/data-00457-en

Google Scholar

[27] Itodo, E. S. (2019). Technical and Economic Feasibility Assessment of Power Supply to Passive Zones of Nigeria's Power Transmission Grid. A Dissertation in the Department of Electrical and Electronic Engineering, the Federal University of Technology, Akure. pp.5-12.

Google Scholar

[28] Jang, S.Y.; Oh, B.T.; Oh, E. (2024). A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites. Sustainability 2024, 16, 5240.

DOI: 10.3390/su16125240

Google Scholar

[29] Javed, M.S., Jurasz, J., Guezgouz, M., (...), Ruggles, T.H. and Ma, T. (2023). Impact of multi-annual renewable energy variability on the optimal sizing of off-grid systems.

DOI: 10.1016/j.rser.2023.113514

Google Scholar

[30] Carrasco, J. M., Franquelo, L. G., Bialasiewicz, J. T., Galvan, E., Guisado, R. C. P., Prats, A. M., leon, J. I. and Moreno-Alfonso, N. (2006). PowerElectronic Systems for the Grid Integration of Renewable Energy Sources: A Survey, IEEE Journal of Trans. Ind. Electron., vol. 53, issue no. 4, pp.1008-1014.

DOI: 10.1109/tie.2006.878356

Google Scholar

[31] Joshi, M. and Inskeep, S. (2023) Institutional Framework of Variable Renewable Energy forecasting in India; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023.

DOI: 10.2172/1985623

Google Scholar

[32] Juma, D., Munda, J. and Kabir, K. (2023). Power-System Flexibility: A Necessary Complement to Variable Renewable Energy Optimal Capacity Configuration. An international Journal of Energies, vol. 16, iss. 21, pp.1-6.

DOI: 10.3390/en16217432

Google Scholar

[33] Komolafe, O. A, Momoh, A. and Omoigui, M. O. (2003). Reliability Investigation of the Nigerian Electric Power Authority Transmission Network in a Deregulated Environments. Conference Record of the IEEE Industry applications conference Vol. 2, Pp. 1328-1335.

DOI: 10.1109/ias.2003.1257723

Google Scholar

[34] Kumar, R., Diwania, S., Singh, R., Ashfaq, H., Khetrapal, P. and Singh, S. (2022). An intelligent Hybrid Wind–PV farm as a static compensator for overall stability and control of multi-machine power system. An international Journal of ISA. Vol. 123. pp.287-291.

DOI: 10.1016/j.isatra.2021.05.014

Google Scholar

[35] Liu, J.; Hu, H.; Yu, S.S. and Trinh, H. (2023). Virtual Power Plant with Renewable Energy Sources and Energy Storage Systems for Sustainable Power Grid-Formation, Control Techniques and Demand Response. An international Journal of Energies 2023, 16, 3705.

DOI: 10.3390/en16093705

Google Scholar

[36] Lin, Y., Eto, J. H. and Johnson, B.B. (2020). Research Roadmap on Grid-Forming Inverters; National Renewable Energy Laboratory: Golden, CO, USA, 2020.

Google Scholar

[37] Marinakis, V. (2020). Big data for energy management and energy-efficient buildings. Energies, 13(7).

DOI: 10.3390/en13071555

Google Scholar

[38] Majidi, H.; Hayati, M. M.; Breyer, C.; Mohammadi-Ivatloo, B.; Honkapuro. S., Karjunen, H., Laaksonen, P. And Sihvonen, V. (2025). Overview of energy modeling requirements and tools for future smart energy systems. An International Journal of Renewable and Sustainable Energy Review, (2925), Vol. 212, 115367.

DOI: 10.1016/j.rser.2025.115367

Google Scholar

[39] Melodi, A.O. (2009). Analysis of Generating Capacity Dynamics of the Nigerian Power System between 1963 and 2020, Advanced Materials Research (Vols. 62-64), pp.114-119.

DOI: 10.4028/www.scientific.net/amr.62-64.114

Google Scholar

[40] Peterssen, F., Schlemminger , M; Lorh, C., Niepetle. R., Hanke-Rauschenbach, R. And Brendel, R. (2024). Impact of forecasting on energy system optimization. An International Journal of Advances in Applied Energy. Vol. 15., 10018.

DOI: 10.1016/j.adapen.2024.100181

Google Scholar

[41] Shahzad, S.and Jasi´nska, E. (2024). Renewable Revolution: A Review of Strategic Flexibility in Future Power Systems. Sustainability 2024, 16, 5454.

DOI: 10.3390/su16135454

Google Scholar

[42] Teferi, T. G., Tella, T. G. and Hampannavar, S. (2024). Impacts of Large Scale Renewable Energy Integration on the Grid Voltage Stability, An International Journal of Electrical Power and Energy Systems, Vol.23, Issue 1, Pp. 1-4.

DOI: 10.1016/j.rineng.2024.102398

Google Scholar

[43] Vedurmudi A. P., Neumann, J., Gruber, M., & Eichstädt, S. (2021). Semantic description of quality of data in sensor networks. Sensors, 21(19).

DOI: 10.3390/s21196462

Google Scholar

[44] Gonzales, Roberto; Lopez, Jesus; Sanchis, Pablo and Marroyo, Lui (2004). Transformerless Inverter for SinglePhase Photovoltaic Systems. IEEE Journal of Trans Power Electron., vol. 22, issue no. 2, pp.694-696.

DOI: 10.1109/tpel.2007.892120

Google Scholar

[45] Okakwu, I. K., Ogujor, E. A. and Oriaifo, P. A. (2017). Load Flow Assessment of the Nigerian 330kV Power System. American Journal of Electrical and Electronic Engineering. Vol. 5, Issue 4. pp.155-161.

Google Scholar

[46] Oluseyi, P.O., Adelaja, T.S. and Akinbulire, T.O. (2017). Analysis of The Transient Stability Limit of the Nigeria 330kV Transmission Sub-network. Nigerian Journal of Technology. Vol. 36, Issue 1, pp.213-216.

DOI: 10.4314/njt.v36i1.26

Google Scholar

[47] Onimisi, J.O., Melodi, A.O. and Adu, M.R. (2024). Modelling Steady State and Transient Stability Parameters for Kainji Hydro Station, Nigeria. Advanced Engineering Forum, Vol. 52, pp.117-128.

DOI: 10.4028/p-p7snnz

Google Scholar

[48] Saadat, H. (1998). Power System Analysis (Second Ed.). McGraw-Hill Inc., New York, The United States of America. p.46.

Google Scholar

[49] Adetokun, B.B.; Ojo, J.O and Muriithi, C.M (2021). Application of large-scale grid-connected solar photovoltaic system for voltage stability improvement of weak national grids. Sci. Rep. 2021, 11, 24526.

DOI: 10.1038/s41598-021-04300-w

Google Scholar

[50] Yusuf, F.L. (2024). Impact of Solar Energy on Nigeria's Electricity Supply Challenges. In: Yunusa-Kaltungo, A. (eds) Key Themes in Energy Management. Lecture Notes in Energy, vol 100. Springer, Cham.

DOI: 10.1007/978-3-031-58086-4_6

Google Scholar

[51] Zaheb, H, Ahmadi, M., Rahmany, N. A., Danish, S. S., Fedayi, H. and Yona, A. (2023). Optimal Grid Flexibility Assessment for Integration. An International Journal on Sustainability. Vol. 15, iss. 20. p.15,032 – 15,201.

DOI: 10.3390/su152015032

Google Scholar

[52] Min, C. G. (2019). Analyzing the Impact of Variability and Uncertainty on Power System Flexibility. Appl. Sci. 2019, 9, 561.

Google Scholar

[53] Shaikh, R.A., Vowles, D.J., Dinovitser, A., Allison, A. and Abbott, D. (2024). Flexibility options in a 100% renewable grid for Australia.

Google Scholar

[54] GrochowicZ, A., Benth, F. E. and Zeyringer, M. (2024). Spatio-temporal Smoothing and Dynamics of Different Electricity Flexibility Options for Highly Renewable Energy Systems Taking the National Grid for Norway as a Case Study. An International Journal of Applied Energy, Elsevier. Vol. 356 (C).

DOI: 10.1016/j.apenergy.2023.122338

Google Scholar

[55] Melodi, A. O. and Oladeji, I. R. (2017). Modelling Steady State Stability Reserve for Specific Nigerian Power Transmission Grid. Institute of Electrical and Electronic Engineering Third International Conference on Electro-Technology for National Development (NIGERCON) (Pp. 967-972).

DOI: 10.1109/nigercon.2017.8281962

Google Scholar

[56] Ogbuefi, V. C. and Madueme, T. C. (2015). Power Flow Analysis of the Nigerian 330kV Electric Power System 10SR Journal of Electrical and Electronics Engineering (10SR-JEEE) Pp. 46-57.

Google Scholar

[57] Mohit, J. and Sarah, I. (2023) Institutional Framework of Variable Renewable Energy Forecasting in India. South Asian Group for Energy (SAGE). Contract No IAG-22-22059 in Conjunction with National Renewable Energy Laboratory (NREL), Operated By Alliance For Sustainable Energy, LLC, For the US Department of Energy (DOE). Contract No. DE-AC36-08GO28308.

DOI: 10.2172/983411

Google Scholar

[58] Frede Blaabjerg, Zhe Chen. and Soren Baekhoej Kjaer (2004). Power Electronics as Efficient Interface in Dispersed Power Generation Systems. IEEE Journal of Trans. Power Electron.,vol. 19, issue no. 5, pp.1187-1192.

DOI: 10.1109/tpel.2004.833453

Google Scholar

[59] Singh, A.R.; Kumar, R.S.; Bajaj, M.; Khadse, C.B.; Zaitsev, I. (2024). Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources. Sci. Rep. 2024, 14, 19207.

DOI: 10.1038/s41598-024-70336-3

Google Scholar

[60] Melodi, A.O., Adu, M.R. and Aremu, S.O (2024). Evaluation of Nigerian Transmission Grid Capacity and Technical Limitations Under Different Load Conditions.

DOI: 10.4028/p-cx4gcx

Google Scholar

[61] Yang, R.; Hu, J.; Li, Z.; Mu, J.; Yu, T.; Xia, J.; Li, X.; Dasgupta, A.; Xiong, H. (2024). Interpretable machine learning for weather and climate prediction: A review. Atmos. Environ. 2024, 338, 120797.

DOI: 10.1016/j.atmosenv.2024.120797

Google Scholar

[62] Shomoye, O. A. (2023). Energy Crises and The Renewable Energy Potentials in Nigeria : A Review. An international Journal of Renewable and Sustainable Energy Reviews, Science Direct, 2023. Vol. 188, p.113794.

DOI: 10.1016/j.rser.2023.113794

Google Scholar

[63] Sule, A. H. (2010). Major Factors Affecting Electricity Generation, Transmission and Distribution in Nigeria. International Journal of Engineering and Mathematical Intelligence. Vol. 1. Issue 2. pp.160-162.

Google Scholar

[64] Sun, R., Xiao, H. F., Niu, C. H., Cao, Q. W., & Yao, Z. Y. (2022). National Quality Infrastructure System and Its Application Progress in Photovoltaic Industry. Electronics (Switzerland), 11(3).

DOI: 10.3390/electronics11030426

Google Scholar

[65] Tahir, H. (2024). Optimization of energy storage systems for integration of renewable energy sources — A bibliometric analysis. An International Journal of Energy Storage. Vol. 94, 11247.

DOI: 10.1016/j.est.2024.112497

Google Scholar

[66] United Nations Conference on Trade and Development. (2010). The Future Energy Matrix and Renewable Energy - Implications for Energy and Food Security. Paper presented at the United Nations Conference on Trade and Development – Multi Year Expert Meeting on Commodities and Development (Second Session), Geneva.

DOI: 10.18356/c0deff39-en

Google Scholar

[67] Urbano, O., Perles, A., Pedraza, C., Rubio-Arraez, S., Castelló, M. L., Ortola, M. D., & Mercado, R. (2020). Cost-effective implementation of a temperature traceability system based on smart rfid tags and iot services. Sensors (Switzerland), 20(4).

DOI: 10.3390/s20041163

Google Scholar

[68] Weerasekara, S., Lu, Z., Ozek, B., Isaacs, J., & Kamarthi, S. (2022). Trends in Adopting Industry 4.0 for Asset Life Cycle Management for Sustainability: A Keyword Co-Occurrence Network Review and Analysis. Sustainability (Switzerland), 14(19).

DOI: 10.3390/su141912233

Google Scholar

[69] Sambo, A. S., Iloeje, O. C. J., Ojosu, O. J., Olayande, S., & Yusuf, A. O. (2006). Nigeria's Experience on the Application of IAEA" s Energy Models (MAED & WASP) for National Energy Planning. Paper presented at the Workshop on Exchange of Experience in Using IAEA's Energy Models and Assessment of Further Training Needs, Korea Atomic Energy Research Institute, Daejeon, South Korea.

Google Scholar

[70] Shafiullah, M.; Ahmed, S.D. and Al-Sulaiman, F.A. (2022). Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review. IEEE Access 2022, 10, 52233–52257.

DOI: 10.1109/access.2022.3174555

Google Scholar

[71] Olu-lawal, A. K.; Olajiga, O. K.; Ani, E. C.; Adeleke, A. K. & Montero, D. J. P. (2024). the Role of Precision Metrology in Enhancing Manufacturing Quality: a Comprehensive Review. Engineering Science & Technology Journal, 5(3), 728–739.

DOI: 10.51594/estj.v5i3.868

Google Scholar

[72] Vasilevskyi, O. M. (2014). Calibration method to assess the accuracy of measurement devices using the theory of uncertainty. International Journal of Metrology and Quality Engineering, 5(4).

DOI: 10.1051/ijmqe/2014017

Google Scholar

[73] Paul, K., Jyothi, B, Kumar, R. S., Singh, A. R., Bajaj, M., Kumar, B. H. & Zaitsev, L. (2025). Optimizing sustainable energy management in grid connected micro-grids using quantum particle swarm optimization for cost and emission reduction. An international journal of Energy.

DOI: 10.1038/s41598-025-90040-0

Google Scholar

[74] Newsom, C. (2012). Renewable Energy Potential in Nigeria: Low-carbon approaches to tackling Nigeria's energy poverty. UK: International Institute for Environment and Development (IIED).

Google Scholar

[75] Liu, Z.; Sun, Y.; Xing, C.; Liu, J., He, Y.; Zhou, Y. and Zhang, G. (2022). Artificial Intelligence Powered Large Scale Renewable Energy Integrations In Mult-Energy Systems for Carbon Neutrality Transitions: Challenges and Future Perspectives. An international Journal on Energy and AI, Vol. 10, 100195.

DOI: 10.1016/j.egyai.2022.100195

Google Scholar