Nonlinear Free Vibration of a Double-Deck Reticulated Shallow Spherical Shell

Article Preview

Abstract:

This paper deals with non-linear free vibration of double-deck reticulated shallow spherical shell by applying the non-linear theory of double-deck reticulated shallow spherical shell established by the author. Model function is supposed to be theory solution of small deflection. The proper equation of double-deck reticulated shallow spherical about time functions with two types of boundary conditions is derived by using Galerkin’s method. At the same time, the analytical expression of ratio of non-linear vibration and linear vibration is deduced and the non-linear effect about amplitude is discussed. Numerical examples are given as well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

350-357

Citation:

Online since:

September 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.H. Liu,D.Li,G.H. Nie, Z.Q. Cheng: Int.J.Non-Linear Mechanics.Vol.26 (1991),pp.547-565

Google Scholar

[2] R.H. Liu G.H. Nie:Journal of Jiangxi Polytechnic University.Vol.13(1991),pp.193-198(in Chinese)

Google Scholar

[3] G.H. Nie R.H. Liu Z.Y. Weng:Shanghai Journal of Mechanics.Vol.15(1994),pp.17-27(in Chinese)

Google Scholar

[4] G.H. Nie R.H. Liu: Applied Mathematics and Mechanics.Vol.15(1994),pp.413-423

Google Scholar

[5] G.H. Nie R.H. Liu: China Civil Engineering Journal.Vol.28(1995),pp.12-21(in Chinese)

Google Scholar

[6] R.H. Liu,T.Xiao,In:Zhuang Feng-gan ed. Modern Mechanics and Science Progress(Tsinghua Uni- versity Press,Beijing,1997)(in Chinese)

Google Scholar

[7] R.H. Liu,T.Xiao:Journal of Jinan University.Vol. 19(1998),pp.1-5(in Chinese)

Google Scholar

[8] R.H. Liu,T.Xiao:Journal of Jinan University.Vol. 20(1999),pp.1-6(in Chinese)

Google Scholar

[9] T.Xiao:Journal of Jinan University.Vol.21(2000),pp.13-19(in Chinese)

Google Scholar

[10] T.Xiao R.H. Liu:Applied Mathematics and Mechanics.Vol.22(2001),pp.747-755

Google Scholar

[11] J.C.Xu,T.Xiao R.H. Liu:Engineering Mechanics.Vol.21(2004),pp.20-23(in Chinese)

Google Scholar

[12] B.Du,F.Wang R.H. Liu Y.H.Lu:Mechanics in Engineering.Vol.28(2006),pp.46-50(in Chinese)

Google Scholar

[13] S.L. Dong W.D. Zhan: Engineering Mechanics.Vol.21(2004),pp.6-14 (in Chinese)

Google Scholar

[14] L.Gu,S.L. Dong: Spatial Structures.Vol.11(2005),pp.39-45(in Chinese)

Google Scholar

[15] X.Z. Wang C.X. Liang M.J. Han K.Y.Ye,G.Wang:Applied Mathematics and Mechanics.Vol.28 (2007),pp.135-140

Google Scholar

[16] J.C.Xu,Y.Li,F.Wang R.H. Liu: Applied Mathematics and mechanics.Vol.31(2010),pp.279-290

Google Scholar

[17] S.Z. Shen,X.Chen:Stability of reticulated shell structures(Science Press,Beijing1999)(in Chinese)

Google Scholar

[18] Y.Zhao, S.L. Dong: Spatial Structures.Vol.1(1994),pp.17-25(in Chinese)

Google Scholar

[19] D.W. Liu S.L. Dong: Spatial Structures.Vol.3(1995),pp.14-22(in Chinese)

Google Scholar

[20] Z.Y. Zhu S.L. Dong: Spatial Structures.Vol.1(1996),pp.1-11 (in Chinese)

Google Scholar

[21] J.C. Xiao K.J.Ma:Spatial Structures.Vol.9(2003),pp.32-37 (in Chinese)

Google Scholar

[22] Z.H. Xie L.J.Li,W.N.Ye,Y.C. Guo W.W.Lu:Journal of Guangdong University of Technology.Vo- l.20(2003),pp.5-8(in Chinese)

Google Scholar

[23] F.L.He,Z.K.Ma: Journal of Hunan University.Vol.34(2007),pp.1-5(in Chinese)

Google Scholar