Exact Cram’er–Rao Lower Bound for Interferometric Phase Estimator

Article Preview

Abstract:

We are concerned with the problem of interferometric phase estimation using multiple baselines. Simple close-form efficient expressions for computing the Cramer-Rao lower bound (CRLB) for general phase estimation problems is derived. Performance analysis of the interferometric phase estimation is carried out based on Monte Carlo simulations and CRLB calculation. We show that by utilizing the Cramer-Rao lower bound we are able to determine the combination of baselines that will enable us to achieve the most accurate estimating performance.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1419-1426

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Bergman. Posterior Cram´er-Rao bounds for sequential estimation. In A. Doucet, N. de Freitas, and N. Gordon, editors, Sequential Monte Carlo methods in practice, 2000, 321-338.

DOI: 10.1007/978-1-4757-3437-9_15

Google Scholar

[2] J.H. Taylor. The Cram´er-Rao estimation error lower bound computation for deterministic nonlinear systems. IEEE Trans on Automatic Control, 1979, AC-24(2): 343-344.

DOI: 10.1109/tac.1979.1101979

Google Scholar

[3] J.S. Abel. A bound on mean-square-estimate error. IEEE Trans on Information Theory, 1993, 39(5): 1675-1680.

DOI: 10.1109/18.259655

Google Scholar

[4] P. Tichavsk´y, C.H. Muravchik, and A. Nehorai. Posterior Cram´er-Rao bounds for discrete-time nonlinear filtering. IEEE Trans on Signal Processing, 1998, 46(5): 1386-1396.

DOI: 10.1109/78.668800

Google Scholar

[5] T.H. Kerr. Status of CR-like lower bounds for nonlinear filtering. IEEE Trans on Aerospace and Electronic Systems, 1989, 25(5): 590-601.

DOI: 10.1109/7.42076

Google Scholar

[6] A.R. Thompson, J.M. Moran, and G.W. Swenson. Interferometry and Synthesis in Radio Astronomy. Wiley Interscience, NY, (1986).

Google Scholar

[7] S.N. Madsen, and H.A. Zebker. Imaging Radar Interferometry. Principles & Applications of Imaging Radar (Manual of Remote Sensing (3rd ed. ), vol. 2), Wiley, NY, (1998).

Google Scholar

[8] C.V. Jr. Jakowatz. Spotlight Mode Synthetic Aperture Radar. Boston: Kluwer Academic Publishers, (1996).

Google Scholar

[9] W.G. Carrara, R.S. Goodman, and R. M. Majewski. Spotlight Synthetic Aperture Radar. Norwood, MA: Artech House, (1995).

Google Scholar

[10] G. Franceschetti, and R. Lanari. Synthetic Aperture Radar Processing. CRC Press, NY, (1999).

Google Scholar

[11] P.A. Rosen, S. Hensley, I.R. Joughin, et al., Synthetic Aperture Radar Interferometry. Proc. IEEE, vol. 88, no. 3, 2000, pp.333-382.

DOI: 10.1109/5.838084

Google Scholar

[12] R. Bamler, and P. Hartl. Synthetic Radar Interferometry. Inv. Prob., vol. 14, 1998, pp.1-54.

Google Scholar

[13] M.A. Richards, A Beginner's Guide to Interferometric SAR Concepts and Signal Processing. IEEE A&E Systems, vol. 22. no. 9, 2007, pp.5-29.

Google Scholar

[14] B. Zitova, and J. Flusser. Image Registration Methods: A Survey. Image and Vision Computing, vol. 21 no. 11, 2003, pp.977-1000.

DOI: 10.1016/s0262-8856(03)00137-9

Google Scholar

[15] L.G. Brown. A Survey of Image Registration Techniques. ACM Computing Surveys, 1992, pp.326-376.

Google Scholar

[16] J.S. Lee, K.P. Papathanassiou, T.L. Ainsworth, M.R. Grunes, and A. Reigber. A New technique for noise filtering of SAR interferometric phase images. IEEE Trans. on Geosci. Remote Sens., vol. 36, no. 5, 1998, pp.1456-1465.

DOI: 10.1109/36.718849

Google Scholar

[17] G. Fornaro, A.M. Guarnieri, et al, Maximum Likelihood Multi-Baseline SAR Interferometry. Proc. IEE-Radar Sonar Navig., vol. 153, no. 3, 2006, pp.279-288.

DOI: 10.1049/ip-rsn:20045113

Google Scholar

[18] Z.F. Li, Z. Bao, and Z.Y. Suo. A Joint Image Coregistration, Phase Noise Suppression, and Phase Unwrapping Method Based on Subspace Projection for Multibaseline InSAR Systems. IEEE Trans. on Geosci. Remote Sens., vol. 45, no. 3, 2007, pp.584-591.

DOI: 10.1109/tgrs.2006.888143

Google Scholar

[19] G. Ferraiuolo, V. Pascazio, and G. Schirinzi. Maximum a posteriori estimation of height profiles in InSAR imaging. IEEE Geosci. Remote Sens. Lett., 2004, pp.66-70.

DOI: 10.1109/lgrs.2003.822882

Google Scholar

[20] Z.J. Mao, and G.S. Liao. Optimum Data Vector Approach to Multibaseline SAR Interferometry Phase Unwrapping. IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp.42-46, (2009).

DOI: 10.1109/lgrs.2008.2005649

Google Scholar

[21] Z.J. Mao, G.S. Liao and D.P. Deng et al., On Optimum Data Vector for InSAR Interferometric Phase Estimation. in Proc. Int. Symp. Antennas, Propagation, and EM Theory, Kunming, China, 2008, pp.1755-1758.

DOI: 10.1109/isape.2008.4735479

Google Scholar

[22] Z.J. Mao, G.S. Liao and Z.W. Yang et al., Phase Unwrapping for Interferometric SAR Using Multibaseline joint Data Group. in Proc. Int. Conf. Acoustics Speech, Signal Process., Taipei, China, 2009, accepted for publication.

DOI: 10.1109/icassp.2009.4959776

Google Scholar

[23] L. Ljung. System Identification: Theory for the User. Englewood Cliffs, Prentice-Hall, NJ, (1987).

Google Scholar

[24] H. Van Trees. Detection, Estimation, and Modulation Theory. Wiley, NY, (1968).

Google Scholar

[25] P. Stoica, and R. Moses. Introduction to Spectral Analysis. Englewood Cliffs, Prentice Hall, NJ, (1997).

Google Scholar

[26] J. Li, and P. Stoica. Robust Adaptive Beamforming. John Wiley & Sons, Inc., Hoboken, NJ, (2006).

Google Scholar